sklearn.metrics.log_loss()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.log_loss(y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None, labels=None)

2025-01-10 15:47:30
sklearn.metrics.pairwise.sigmoid_kernel()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise.sigmoid_kernel(X, Y=None, gamma=None, coef0=1)

2025-01-10 15:47:30
sklearn.datasets.make_spd_matrix()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_spd_matrix(n_dim, random_state=None)

2025-01-10 15:47:30
A demo of the Spectral Co-Clustering algorithm
  • References/Python/scikit-learn/Examples/Biclustering

This example demonstrates how to generate a dataset and bicluster it using the Spectral Co-Clustering algorithm. The dataset is generated

2025-01-10 15:47:30
Kernel Density Estimation
  • References/Python/scikit-learn/Examples/Nearest Neighbors

This example shows how kernel density estimation (KDE), a powerful non-parametric density estimation technique, can be used to learn a generative model for a dataset

2025-01-10 15:47:30
Gradient Boosting regularization
  • References/Python/scikit-learn/Examples/Ensemble methods

Illustration of the effect of different regularization strategies for Gradient Boosting. The example is taken from Hastie et al 2009. The loss function

2025-01-10 15:47:30
covariance.LedoitWolf()
  • References/Python/scikit-learn/API Reference/covariance

class sklearn.covariance.LedoitWolf(store_precision=True, assume_centered=False, block_size=1000)

2025-01-10 15:47:30
sklearn.model_selection.fit_grid_point()
  • References/Python/scikit-learn/API Reference/model_selection

sklearn.model_selection.fit_grid_point(X, y, estimator, parameters, train, test, scorer, verbose, error_score='raise', **fit_params)

2025-01-10 15:47:30
Statistical learning
  • References/Python/scikit-learn/Tutorials

Datasets Scikit-learn deals with learning information from one or more datasets that are represented as 2D arrays. They can be understood as a list of multi-dimensional observations

2025-01-10 15:47:30
1.7.
  • References/Python/scikit-learn/Guide

Gaussian Processes (GP) are a generic supervised learning method designed to solve regression and probabilistic classification problems

2025-01-10 15:47:30