This example demonstrates how to generate a dataset and bicluster it using the Spectral Co-Clustering algorithm.
The dataset is generated using the make_biclusters
function, which creates a matrix of small values and implants bicluster with large values. The rows and columns are then shuffled and passed to the Spectral Co-Clustering algorithm. Rearranging the shuffled matrix to make biclusters contiguous shows how accurately the algorithm found the biclusters.
Out:
1 | consensus score: 1.000 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | print (__doc__) # Author: Kemal Eren <kemal@kemaleren.com> # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import make_biclusters from sklearn.datasets import samples_generator as sg from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.metrics import consensus_score data, rows, columns = make_biclusters( shape = ( 300 , 300 ), n_clusters = 5 , noise = 5 , shuffle = False , random_state = 0 ) plt.matshow(data, cmap = plt.cm.Blues) plt.title( "Original dataset" ) data, row_idx, col_idx = sg._shuffle(data, random_state = 0 ) plt.matshow(data, cmap = plt.cm.Blues) plt.title( "Shuffled dataset" ) model = SpectralCoclustering(n_clusters = 5 , random_state = 0 ) model.fit(data) score = consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx])) print ( "consensus score: {:.3f}" . format (score)) fit_data = data[np.argsort(model.row_labels_)] fit_data = fit_data[:, np.argsort(model.column_labels_)] plt.matshow(fit_data, cmap = plt.cm.Blues) plt.title( "After biclustering; rearranged to show biclusters" ) plt.show() |
Total running time of the script: (0 minutes 0.216 seconds)
Download Python source code:
plot_spectral_coclustering.py
Download IPython notebook:
plot_spectral_coclustering.ipynb
Please login to continue.