Reference: Brendan J. Frey and Delbert Dueck, ?Clustering by Passing Messages Between Data Points?, Science Feb. 2007
print(__doc__) from sklearn.cluster import AffinityPropagation from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs
Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=300, centers=centers, cluster_std=0.5,
                            random_state=0)
 Compute Affinity Propagation
af = AffinityPropagation(preference=-50).fit(X)
cluster_centers_indices = af.cluster_centers_indices_
labels = af.labels_
n_clusters_ = len(cluster_centers_indices)
print('Estimated number of clusters: %d' % n_clusters_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"
      % metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"
      % metrics.adjusted_mutual_info_score(labels_true, labels))
print("Silhouette Coefficient: %0.3f"
      % metrics.silhouette_score(X, labels, metric='sqeuclidean'))
 Out:
Estimated number of clusters: 3 Homogeneity: 0.872 Completeness: 0.872 V-measure: 0.872 Adjusted Rand Index: 0.912 Adjusted Mutual Information: 0.871 Silhouette Coefficient: 0.753
Plot result
import matplotlib.pyplot as plt
from itertools import cycle
plt.close('all')
plt.figure(1)
plt.clf()
colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(n_clusters_), colors):
    class_members = labels == k
    cluster_center = X[cluster_centers_indices[k]]
    plt.plot(X[class_members, 0], X[class_members, 1], col + '.')
    plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,
             markeredgecolor='k', markersize=14)
    for x in X[class_members]:
        plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()
 
Total running time of the script: (0 minutes 0.700 seconds)
 Download Python source code: 
 plot_affinity_propagation.py
 Download IPython notebook: 
                  
    		
    		
    		
    		
    		
            		
    		
    		
    	plot_affinity_propagation.ipynb
Please login to continue.