Reference:
Dorin Comaniciu and Peter Meer, ?Mean Shift: A robust approach toward feature space analysis?. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619.
1 2 3 4 5 | print (__doc__) import numpy as np from sklearn.cluster import MeanShift, estimate_bandwidth from sklearn.datasets.samples_generator import make_blobs |
Generate sample data
1 2 | centers = [[ 1 , 1 ], [ - 1 , - 1 ], [ 1 , - 1 ]] X, _ = make_blobs(n_samples = 10000 , centers = centers, cluster_std = 0.6 ) |
Compute clustering with MeanShift
1 2 3 4 5 6 7 8 9 10 11 12 | # The following bandwidth can be automatically detected using bandwidth = estimate_bandwidth(X, quantile = 0.2 , n_samples = 500 ) ms = MeanShift(bandwidth = bandwidth, bin_seeding = True ) ms.fit(X) labels = ms.labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len (labels_unique) print ( "number of estimated clusters : %d" % n_clusters_) |
Out:
1 | number of estimated clusters : 3 |
Plot result
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import matplotlib.pyplot as plt from itertools import cycle plt.figure( 1 ) plt.clf() colors = cycle( 'bgrcmykbgrcmykbgrcmykbgrcmyk' ) for k, col in zip ( range (n_clusters_), colors): my_members = labels = = k cluster_center = cluster_centers[k] plt.plot(X[my_members, 0 ], X[my_members, 1 ], col + '.' ) plt.plot(cluster_center[ 0 ], cluster_center[ 1 ], 'o' , markerfacecolor = col, markeredgecolor = 'k' , markersize = 14 ) plt.title( 'Estimated number of clusters: %d' % n_clusters_) plt.show() |
Total running time of the script: (0 minutes 1.117 seconds)
Download Python source code:
plot_mean_shift.py
Download IPython notebook:
plot_mean_shift.ipynb
Please login to continue.