-
sklearn.preprocessing.label_binarize(y, classes, neg_label=0, pos_label=1, sparse_output=False)
[source] -
Binarize labels in a one-vs-all fashion
Several regression and binary classification algorithms are available in the scikit. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme.
This function makes it possible to compute this transformation for a fixed set of class labels known ahead of time.
Parameters: y : array-like
Sequence of integer labels or multilabel data to encode.
classes : array-like of shape [n_classes]
Uniquely holds the label for each class.
neg_label : int (default: 0)
Value with which negative labels must be encoded.
pos_label : int (default: 1)
Value with which positive labels must be encoded.
sparse_output : boolean (default: False),
Set to true if output binary array is desired in CSR sparse format
Returns: Y : numpy array or CSR matrix of shape [n_samples, n_classes]
Shape will be [n_samples, 1] for binary problems.
See also
-
LabelBinarizer
- class used to wrap the functionality of label_binarize and allow for fitting to classes independently of the transform operation
Examples
1234>>>
from
sklearn.preprocessing
import
label_binarize
>>> label_binarize([
1
,
6
], classes
=
[
1
,
2
,
4
,
6
])
array([[
1
,
0
,
0
,
0
],
[
0
,
0
,
0
,
1
]])
The class ordering is preserved:
123>>> label_binarize([
1
,
6
], classes
=
[
1
,
6
,
4
,
2
])
array([[
1
,
0
,
0
,
0
],
[
0
,
1
,
0
,
0
]])
Binary targets transform to a column vector
12345>>> label_binarize([
'yes'
,
'no'
,
'no'
,
'yes'
], classes
=
[
'no'
,
'yes'
])
array([[
1
],
[
0
],
[
0
],
[
1
]])
-
sklearn.preprocessing.label_binarize()
Examples using

2025-01-10 15:47:30
Please login to continue.