-
sklearn.utils.shuffle(*arrays, **options)
[source] -
Shuffle arrays or sparse matrices in a consistent way
This is a convenience alias to
resample(*arrays, replace=False)
to do random permutations of the collections.Parameters: *arrays : sequence of indexable data-structures
Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension.
random_state : int or RandomState instance
Control the shuffling for reproducible behavior.
n_samples : int, None by default
Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays.
Returns: shuffled_arrays : sequence of indexable data-structures
Sequence of shuffled views of the collections. The original arrays are not impacted.
See also
Examples
It is possible to mix sparse and dense arrays in the same run:
123456789101112131415161718192021222324252627>>> X
=
np.array([[
1.
,
0.
], [
2.
,
1.
], [
0.
,
0.
]])
>>> y
=
np.array([
0
,
1
,
2
])
>>>
from
scipy.sparse
import
coo_matrix
>>> X_sparse
=
coo_matrix(X)
>>>
from
sklearn.utils
import
shuffle
>>> X, X_sparse, y
=
shuffle(X, X_sparse, y, random_state
=
0
)
>>> X
array([[
0.
,
0.
],
[
2.
,
1.
],
[
1.
,
0.
]])
>>> X_sparse
<
3x2
sparse matrix of
type
'<... '
numpy.float64
'>'
with
3
stored elements
in
Compressed Sparse Row
format
>
>>> X_sparse.toarray()
array([[
0.
,
0.
],
[
2.
,
1.
],
[
1.
,
0.
]])
>>> y
array([
2
,
1
,
0
])
>>> shuffle(y, n_samples
=
2
, random_state
=
0
)
array([
0
,
1
])
sklearn.utils.shuffle()
Examples using

2025-01-10 15:47:30
Please login to continue.