sklearn.utils.shuffle()

sklearn.utils.shuffle(*arrays, **options) [source]

Shuffle arrays or sparse matrices in a consistent way

This is a convenience alias to resample(*arrays, replace=False) to do random permutations of the collections.

Parameters:

*arrays : sequence of indexable data-structures

Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension.

random_state : int or RandomState instance

Control the shuffling for reproducible behavior.

n_samples : int, None by default

Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays.

Returns:

shuffled_arrays : sequence of indexable data-structures

Sequence of shuffled views of the collections. The original arrays are not impacted.

Examples

It is possible to mix sparse and dense arrays in the same run:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
>>> X = np.array([[1., 0.], [2., 1.], [0., 0.]])
>>> y = np.array([0, 1, 2])
 
>>> from scipy.sparse import coo_matrix
>>> X_sparse = coo_matrix(X)
 
>>> from sklearn.utils import shuffle
>>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0)
>>> X
array([[ 0.0.],
       [ 2.1.],
       [ 1.0.]])
 
>>> X_sparse                  
<3x2 sparse matrix of type '<... 'numpy.float64'>'
    with 3 stored elements in Compressed Sparse Row format>
 
>>> X_sparse.toarray()
array([[ 0.0.],
       [ 2.1.],
       [ 1.0.]])
 
>>> y
array([2, 1, 0])
 
>>> shuffle(y, n_samples=2, random_state=0)
array([0, 1])

Examples using sklearn.utils.shuffle

doc_scikit_learn
2025-01-10 15:47:30
Comments
Leave a Comment

Please login to continue.