This is an example showing the prediction latency of various scikit-learn estimators.
The goal is to measure the latency one can expect when doing predictions either in bulk or atomic (i.e. one by one) mode.
The plots represent the distribution of the prediction latency as a boxplot.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | # Authors: Eustache Diemert <eustache@diemert.fr> # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import time import gc import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from scipy.stats import scoreatpercentile from sklearn.datasets.samples_generator import make_regression from sklearn.ensemble.forest import RandomForestRegressor from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.svm.classes import SVR from sklearn.utils import shuffle def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals () def atomic_benchmark_estimator(estimator, X_test, verbose = False ): """Measure runtime prediction of each instance.""" n_instances = X_test.shape[ 0 ] runtimes = np.zeros(n_instances, dtype = np. float ) for i in range (n_instances): instance = X_test[[i], :] start = time.time() estimator.predict(instance) runtimes[i] = time.time() - start if verbose: print ( "atomic_benchmark runtimes:" , min (runtimes), scoreatpercentile( runtimes, 50 ), max (runtimes)) return runtimes def bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose): """Measure runtime prediction of the whole input.""" n_instances = X_test.shape[ 0 ] runtimes = np.zeros(n_bulk_repeats, dtype = np. float ) for i in range (n_bulk_repeats): start = time.time() estimator.predict(X_test) runtimes[i] = time.time() - start runtimes = np.array( list ( map ( lambda x: x / float (n_instances), runtimes))) if verbose: print ( "bulk_benchmark runtimes:" , min (runtimes), scoreatpercentile( runtimes, 50 ), max (runtimes)) return runtimes def benchmark_estimator(estimator, X_test, n_bulk_repeats = 30 , verbose = False ): """ Measure runtimes of prediction in both atomic and bulk mode. Parameters ---------- estimator : already trained estimator supporting `predict()` X_test : test input n_bulk_repeats : how many times to repeat when evaluating bulk mode Returns ------- atomic_runtimes, bulk_runtimes : a pair of `np.array` which contain the runtimes in seconds. """ atomic_runtimes = atomic_benchmark_estimator(estimator, X_test, verbose) bulk_runtimes = bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose) return atomic_runtimes, bulk_runtimes def generate_dataset(n_train, n_test, n_features, noise = 0.1 , verbose = False ): """Generate a regression dataset with the given parameters.""" if verbose: print ( "generating dataset..." ) X, y, coef = make_regression(n_samples = n_train + n_test, n_features = n_features, noise = noise, coef = True ) random_seed = 13 X_train, X_test, y_train, y_test = train_test_split( X, y, train_size = n_train, random_state = random_seed) X_train, y_train = shuffle(X_train, y_train, random_state = random_seed) X_scaler = StandardScaler() X_train = X_scaler.fit_transform(X_train) X_test = X_scaler.transform(X_test) y_scaler = StandardScaler() y_train = y_scaler.fit_transform(y_train[:, None ])[:, 0 ] y_test = y_scaler.transform(y_test[:, None ])[:, 0 ] gc.collect() if verbose: print ( "ok" ) return X_train, y_train, X_test, y_test def boxplot_runtimes(runtimes, pred_type, configuration): """ Plot a new `Figure` with boxplots of prediction runtimes. Parameters ---------- runtimes : list of `np.array` of latencies in micro-seconds cls_names : list of estimator class names that generated the runtimes pred_type : 'bulk' or 'atomic' """ fig, ax1 = plt.subplots(figsize = ( 10 , 6 )) bp = plt.boxplot(runtimes, ) cls_infos = [ '%s\n(%d %s)' % (estimator_conf[ 'name' ], estimator_conf[ 'complexity_computer' ]( estimator_conf[ 'instance' ]), estimator_conf[ 'complexity_label' ]) for estimator_conf in configuration[ 'estimators' ]] plt.setp(ax1, xticklabels = cls_infos) plt.setp(bp[ 'boxes' ], color = 'black' ) plt.setp(bp[ 'whiskers' ], color = 'black' ) plt.setp(bp[ 'fliers' ], color = 'red' , marker = '+' ) ax1.yaxis.grid( True , linestyle = '-' , which = 'major' , color = 'lightgrey' , alpha = 0.5 ) ax1.set_axisbelow( True ) ax1.set_title( 'Prediction Time per Instance - %s, %d feats.' % ( pred_type.capitalize(), configuration[ 'n_features' ])) ax1.set_ylabel( 'Prediction Time (us)' ) plt.show() def benchmark(configuration): """Run the whole benchmark.""" X_train, y_train, X_test, y_test = generate_dataset( configuration[ 'n_train' ], configuration[ 'n_test' ], configuration[ 'n_features' ]) stats = {} for estimator_conf in configuration[ 'estimators' ]: print ( "Benchmarking" , estimator_conf[ 'instance' ]) estimator_conf[ 'instance' ].fit(X_train, y_train) gc.collect() a, b = benchmark_estimator(estimator_conf[ 'instance' ], X_test) stats[estimator_conf[ 'name' ]] = { 'atomic' : a, 'bulk' : b} cls_names = [estimator_conf[ 'name' ] for estimator_conf in configuration[ 'estimators' ]] runtimes = [ 1e6 * stats[clf_name][ 'atomic' ] for clf_name in cls_names] boxplot_runtimes(runtimes, 'atomic' , configuration) runtimes = [ 1e6 * stats[clf_name][ 'bulk' ] for clf_name in cls_names] boxplot_runtimes(runtimes, 'bulk (%d)' % configuration[ 'n_test' ], configuration) def n_feature_influence(estimators, n_train, n_test, n_features, percentile): """ Estimate influence of the number of features on prediction time. Parameters ---------- estimators : dict of (name (str), estimator) to benchmark n_train : nber of training instances (int) n_test : nber of testing instances (int) n_features : list of feature-space dimensionality to test (int) percentile : percentile at which to measure the speed (int [0-100]) Returns: -------- percentiles : dict(estimator_name, dict(n_features, percentile_perf_in_us)) """ percentiles = defaultdict(defaultdict) for n in n_features: print ( "benchmarking with %d features" % n) X_train, y_train, X_test, y_test = generate_dataset(n_train, n_test, n) for cls_name, estimator in estimators.items(): estimator.fit(X_train, y_train) gc.collect() runtimes = bulk_benchmark_estimator(estimator, X_test, 30 , False ) percentiles[cls_name][n] = 1e6 * scoreatpercentile(runtimes, percentile) return percentiles def plot_n_features_influence(percentiles, percentile): fig, ax1 = plt.subplots(figsize = ( 10 , 6 )) colors = [ 'r' , 'g' , 'b' ] for i, cls_name in enumerate (percentiles.keys()): x = np.array( sorted ([n for n in percentiles[cls_name].keys()])) y = np.array([percentiles[cls_name][n] for n in x]) plt.plot(x, y, color = colors[i], ) ax1.yaxis.grid( True , linestyle = '-' , which = 'major' , color = 'lightgrey' , alpha = 0.5 ) ax1.set_axisbelow( True ) ax1.set_title( 'Evolution of Prediction Time with #Features' ) ax1.set_xlabel( '#Features' ) ax1.set_ylabel( 'Prediction Time at %d%%-ile (us)' % percentile) plt.show() def benchmark_throughputs(configuration, duration_secs = 0.1 ): """benchmark throughput for different estimators.""" X_train, y_train, X_test, y_test = generate_dataset( configuration[ 'n_train' ], configuration[ 'n_test' ], configuration[ 'n_features' ]) throughputs = dict () for estimator_config in configuration[ 'estimators' ]: estimator_config[ 'instance' ].fit(X_train, y_train) start_time = time.time() n_predictions = 0 while (time.time() - start_time) < duration_secs: estimator_config[ 'instance' ].predict(X_test[[ 0 ]]) n_predictions + = 1 throughputs[estimator_config[ 'name' ]] = n_predictions / duration_secs return throughputs def plot_benchmark_throughput(throughputs, configuration): fig, ax = plt.subplots(figsize = ( 10 , 6 )) colors = [ 'r' , 'g' , 'b' ] cls_infos = [ '%s\n(%d %s)' % (estimator_conf[ 'name' ], estimator_conf[ 'complexity_computer' ]( estimator_conf[ 'instance' ]), estimator_conf[ 'complexity_label' ]) for estimator_conf in configuration[ 'estimators' ]] cls_values = [throughputs[estimator_conf[ 'name' ]] for estimator_conf in configuration[ 'estimators' ]] plt.bar( range ( len (throughputs)), cls_values, width = 0.5 , color = colors) ax.set_xticks(np.linspace( 0.25 , len (throughputs) - 0.75 , len (throughputs))) ax.set_xticklabels(cls_infos, fontsize = 10 ) ymax = max (cls_values) * 1.2 ax.set_ylim(( 0 , ymax)) ax.set_ylabel( 'Throughput (predictions/sec)' ) ax.set_title( 'Prediction Throughput for different estimators (%d ' 'features)' % configuration[ 'n_features' ]) plt.show() |
main code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | start_time = time.time() # benchmark bulk/atomic prediction speed for various regressors configuration = { 'n_train' : int ( 1e3 ), 'n_test' : int ( 1e2 ), 'n_features' : int ( 1e2 ), 'estimators' : [ { 'name' : 'Linear Model' , 'instance' : SGDRegressor(penalty = 'elasticnet' , alpha = 0.01 , l1_ratio = 0.25 , fit_intercept = True ), 'complexity_label' : 'non-zero coefficients' , 'complexity_computer' : lambda clf: np.count_nonzero(clf.coef_)}, { 'name' : 'RandomForest' , 'instance' : RandomForestRegressor(), 'complexity_label' : 'estimators' , 'complexity_computer' : lambda clf: clf.n_estimators}, { 'name' : 'SVR' , 'instance' : SVR(kernel = 'rbf' ), 'complexity_label' : 'support vectors' , 'complexity_computer' : lambda clf: len (clf.support_vectors_)}, ] } benchmark(configuration) # benchmark n_features influence on prediction speed percentile = 90 percentiles = n_feature_influence({ 'ridge' : Ridge()}, configuration[ 'n_train' ], configuration[ 'n_test' ], [ 100 , 250 , 500 ], percentile) plot_n_features_influence(percentiles, percentile) # benchmark throughput throughputs = benchmark_throughputs(configuration) plot_benchmark_throughput(throughputs, configuration) stop_time = time.time() print ( "example run in %.2fs" % (stop_time - start_time)) |
Out:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | Benchmarking SGDRegressor(alpha = 0.01 , average = False , epsilon = 0.1 , eta0 = 0.01 , fit_intercept = True , l1_ratio = 0.25 , learning_rate = 'invscaling' , loss = 'squared_loss' , n_iter = 5 , penalty = 'elasticnet' , power_t = 0.25 , random_state = None , shuffle = True , verbose = 0 , warm_start = False ) Benchmarking RandomForestRegressor(bootstrap = True , criterion = 'mse' , max_depth = None , max_features = 'auto' , max_leaf_nodes = None , min_impurity_split = 1e - 07 , min_samples_leaf = 1 , min_samples_split = 2 , min_weight_fraction_leaf = 0.0 , n_estimators = 10 , n_jobs = 1 , oob_score = False , random_state = None , verbose = 0 , warm_start = False ) Benchmarking SVR(C = 1.0 , cache_size = 200 , coef0 = 0.0 , degree = 3 , epsilon = 0.1 , gamma = 'auto' , kernel = 'rbf' , max_iter = - 1 , shrinking = True , tol = 0.001 , verbose = False ) benchmarking with 100 features benchmarking with 250 features benchmarking with 500 features example run in 3.53s |
Total running time of the script: (0 minutes 3.532 seconds)
Download Python source code:
plot_prediction_latency.py
Download IPython notebook:
plot_prediction_latency.ipynb
Please login to continue.