-
sklearn.metrics.mean_absolute_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average')
[source] -
Mean absolute error regression loss
Read more in the User Guide.
Parameters: y_true : array-like of shape = (n_samples) or (n_samples, n_outputs)
Ground truth (correct) target values.
y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs)
Estimated target values.
sample_weight : array-like of shape = (n_samples), optional
Sample weights.
multioutput : string in [?raw_values?, ?uniform_average?]
or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
- ?raw_values? :
-
Returns a full set of errors in case of multioutput input.
- ?uniform_average? :
-
Errors of all outputs are averaged with uniform weight.
Returns: loss : float or ndarray of floats
If multioutput is ?raw_values?, then mean absolute error is returned for each output separately. If multioutput is ?uniform_average? or an ndarray of weights, then the weighted average of all output errors is returned.
MAE output is non-negative floating point. The best value is 0.0.
Examples
1234567891011121314>>>
from
sklearn.metrics
import
mean_absolute_error
>>> y_true
=
[
3
,
-
0.5
,
2
,
7
]
>>> y_pred
=
[
2.5
,
0.0
,
2
,
8
]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true
=
[[
0.5
,
1
], [
-
1
,
1
], [
7
,
-
6
]]
>>> y_pred
=
[[
0
,
2
], [
-
1
,
2
], [
8
,
-
5
]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput
=
'raw_values'
)
array([
0.5
,
1.
])
>>> mean_absolute_error(y_true, y_pred, multioutput
=
[
0.3
,
0.7
])
...
0.849
...
sklearn.metrics.mean_absolute_error()

2025-01-10 15:47:30
Please login to continue.