sklearn.metrics.label_ranking_average_precision_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.label_ranking_average_precision_score(y_true, y_score)

2025-01-10 15:47:30
sklearn.preprocessing.label_binarize()
  • References/Python/scikit-learn/API Reference/preprocessing

sklearn.preprocessing.label_binarize(y, classes, neg_label=0, pos_label=1, sparse_output=False)

2025-01-10 15:47:30
decomposition.FastICA()
  • References/Python/scikit-learn/API Reference/decomposition

class sklearn.decomposition.FastICA(n_components=None, algorithm='parallel', whiten=True, fun='logcosh', fun_args=None, max_iter=200

2025-01-10 15:47:30
IsolationForest example
  • References/Python/scikit-learn/Examples/Ensemble methods

An example using IsolationForest for anomaly detection. The IsolationForest ?isolates? observations by randomly selecting a feature and then randomly selecting

2025-01-10 15:47:30
API Reference
  • References/Python/scikit-learn/Guide

This is the class and function reference of scikit-learn. Please refer to the full user guide for further details, as the class and function raw specifications may

2025-01-10 15:47:30
sklearn.metrics.pairwise_distances_argmin()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.pairwise_distances_argmin(X, Y, axis=1, metric='euclidean', batch_size=500, metric_kwargs=None)

2025-01-10 15:47:30
sklearn.metrics.hinge_loss()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.hinge_loss(y_true, pred_decision, labels=None, sample_weight=None)

2025-01-10 15:47:30
SGD: Penalties
  • References/Python/scikit-learn/Examples/Generalized Linear Models

Plot the contours of the three penalties. All of the above are supported by sklearn.linear_model.stochastic_gradient.

2025-01-10 15:47:30
Choosing the right estimator
  • References/Python/scikit-learn/Tutorials

Often the hardest part of solving a machine learning problem can be finding the right estimator for the job. Different estimators are better suited for different types of data and different

2025-01-10 15:47:30
base.ClusterMixin
  • References/Python/scikit-learn/API Reference/base

class sklearn.base.ClusterMixin

2025-01-10 15:47:30