Label Propagation digits active learning
  • References/Python/scikit-learn/Examples/Semi Supervised Classification

Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model

2025-01-10 15:47:30
sklearn.metrics.hamming_loss()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.hamming_loss(y_true, y_pred, labels=None, sample_weight=None, classes=None)

2025-01-10 15:47:30
3.4.
  • References/Python/scikit-learn/Guide

After training a scikit-learn model, it is desirable to have a way to persist the model for future use without having to retrain. The following section gives you an example

2025-01-10 15:47:30
sklearn.metrics.silhouette_score()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.silhouette_score(X, labels, metric='euclidean', sample_size=None, random_state=None, **kwds)

2025-01-10 15:47:30
feature_selection.SelectFdr()
  • References/Python/scikit-learn/API Reference/feature_selection

class sklearn.feature_selection.SelectFdr(score_func=, alpha=0.05)

2025-01-10 15:47:30
sklearn.datasets.fetch_lfw_pairs()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5, color=False, slice_=(slice(70, 195

2025-01-10 15:47:30
sklearn.preprocessing.binarize()
  • References/Python/scikit-learn/API Reference/preprocessing

sklearn.preprocessing.binarize(X, threshold=0.0, copy=True)

2025-01-10 15:47:30
grid_search.ParameterGrid()
  • References/Python/scikit-learn/API Reference/grid_search

Warning DEPRECATED class

2025-01-10 15:47:30
Blind source separation using FastICA
  • References/Python/scikit-learn/Examples/Decomposition

An example of estimating sources from noisy data.

2025-01-10 15:47:30
grid_search.ParameterSampler()
  • References/Python/scikit-learn/API Reference/grid_search

Warning DEPRECATED

2025-01-10 15:47:30