3.1.
  • References/Python/scikit-learn/Guide

Learning the parameters of a prediction function and testing it on the same data is a methodological mistake: a model that would just repeat

2025-01-10 15:47:30
Nearest Neighbors Classification
  • References/Python/scikit-learn/Examples/Nearest Neighbors

Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class.

2025-01-10 15:47:30
Plot randomly generated classification dataset
  • References/Python/scikit-learn/Examples/Dataset examples

Plot several randomly generated 2D classification datasets. This example illustrates the datasets.make_classification datasets

2025-01-10 15:47:30
sklearn.cluster.k_means()
  • References/Python/scikit-learn/API Reference/cluster

sklearn.cluster.k_means(X, n_clusters, init='k-means++', precompute_distances='auto', n_init=10, max_iter=300, verbose=False, tol=0.0001

2025-01-10 15:47:30
sklearn.datasets.make_friedman2()
  • References/Python/scikit-learn/API Reference/datasets

sklearn.datasets.make_friedman2(n_samples=100, noise=0.0, random_state=None)

2025-01-10 15:47:30
sklearn.metrics.hamming_loss()
  • References/Python/scikit-learn/API Reference/metrics

sklearn.metrics.hamming_loss(y_true, y_pred, labels=None, sample_weight=None, classes=None)

2025-01-10 15:47:30
sklearn.ensemble.partial_dependence.plot_partial_dependence()
  • References/Python/scikit-learn/API Reference/ensemble

sklearn.ensemble.partial_dependence.plot_partial_dependence(gbrt, X, features, feature_names=None, label=None

2025-01-10 15:47:30
mixture.GaussianMixture()
  • References/Python/scikit-learn/API Reference/mixture

class sklearn.mixture.GaussianMixture(n_components=1, covariance_type='full', tol=0.001, reg_covar=1e-06, max_iter=100, n_init=1,

2025-01-10 15:47:30
Gaussian Mixture Model Sine Curve
  • References/Python/scikit-learn/Examples/Gaussian Mixture Models

This example demonstrates the behavior of Gaussian mixture models fit on data that was not sampled from a mixture of Gaussian random variables. The dataset

2025-01-10 15:47:30
Gradient Boosting Out-of-Bag estimates
  • References/Python/scikit-learn/Examples/Ensemble methods

Out-of-bag (OOB) estimates can be a useful heuristic to estimate the ?optimal? number of boosting iterations. OOB estimates are almost identical to cross-validation

2025-01-10 15:47:30