-
sklearn.datasets.make_friedman2(n_samples=100, noise=0.0, random_state=None)
[source] -
Generate the ?Friedman #2? regression problem
This dataset is described in Friedman [1] and Breiman [2].
Inputs
X
are 4 independent features uniformly distributed on the intervals:12340
<
=
X[:,
0
] <
=
100
,
40
*
pi <
=
X[:,
1
] <
=
560
*
pi,
0
<
=
X[:,
2
] <
=
1
,
1
<
=
X[:,
3
] <
=
11.
The output
y
is created according to the formula:1y(X)
=
(X[:,
0
]
*
*
2
+
(X[:,
1
]
*
X[:,
2
]
-
1
/
(X[:,
1
]
*
X[:,
3
]))
*
*
2
)
*
*
0.5
+
noise
*
N(
0
,
1
).
Read more in the User Guide.
Parameters: n_samples : int, optional (default=100)
The number of samples.
noise : float, optional (default=0.0)
The standard deviation of the gaussian noise applied to the output.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by
np.random
.Returns: X : array of shape [n_samples, 4]
The input samples.
y : array of shape [n_samples]
The output values.
References
[R139] J. Friedman, ?Multivariate adaptive regression splines?, The Annals of Statistics 19 (1), pages 1-67, 1991. [R140] L. Breiman, ?Bagging predictors?, Machine Learning 24, pages 123-140, 1996.
sklearn.datasets.make_friedman2()

2025-01-10 15:47:30
Please login to continue.