-
sklearn.datasets.make_friedman1(n_samples=100, n_features=10, noise=0.0, random_state=None)
[source] -
Generate the ?Friedman #1? regression problem
This dataset is described in Friedman [1] and Breiman [2].
Inputs
X
are independent features uniformly distributed on the interval [0, 1]. The outputy
is created according to the formula:1y(X)
=
10
*
sin(pi
*
X[:,
0
]
*
X[:,
1
])
+
20
*
(X[:,
2
]
-
0.5
)
*
*
2
+
10
*
X[:,
3
]
+
5
*
X[:,
4
]
+
noise
*
N(
0
,
1
).
Out of the
n_features
features, only 5 are actually used to computey
. The remaining features are independent ofy
.The number of features has to be >= 5.
Read more in the User Guide.
Parameters: n_samples : int, optional (default=100)
The number of samples.
n_features : int, optional (default=10)
The number of features. Should be at least 5.
noise : float, optional (default=0.0)
The standard deviation of the gaussian noise applied to the output.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by
np.random
.Returns: X : array of shape [n_samples, n_features]
The input samples.
y : array of shape [n_samples]
The output values.
References
[R137] J. Friedman, ?Multivariate adaptive regression splines?, The Annals of Statistics 19 (1), pages 1-67, 1991. [R138] L. Breiman, ?Bagging predictors?, Machine Learning 24, pages 123-140, 1996.
sklearn.datasets.make_friedman1()

2025-01-10 15:47:30
Please login to continue.