gaussian
  • References/Python/scikit-image/API Reference/filters

gaussian skimage.filters.gaussian(image, sigma, output=None, mode='nearest', cval=0, multichannel=None)

2025-01-10 15:47:30
subtract-mean-percentile
  • References/Python/scikit-image/API Reference/filters.rank

subtract_mean_percentile skimage.filters.rank.subtract_mean_percentile(image, selem, out=None, mask=None, shift_x=False

2025-01-10 15:47:30
img-as-int
  • References/Python/scikit-image/API Reference/skimage

img_as_int skimage.img_as_int(image, force_copy=False)

2025-01-10 15:47:30
pop
  • References/Python/scikit-image/API Reference/io

pop skimage.io.pop()

2025-01-10 15:47:30
estimate-transform
  • References/Python/scikit-image/API Reference/transform

estimate_transform skimage.transform.estimate_transform(ttype, src, dst, **kwargs)

2025-01-10 15:47:30
threshold-yen
  • References/Python/scikit-image/API Reference/filters

threshold_yen skimage.filters.threshold_yen(image, nbins=256)

2025-01-10 15:47:30
imread
  • References/Python/scikit-image/API Reference/data

imread skimage.data.imread(fname, as_grey=False, plugin=None, flatten=None, **plugin_args)

2025-01-10 15:47:30
percentile
  • References/Python/scikit-image/API Reference/filters.rank

percentile skimage.filters.rank.percentile(image, selem, out=None, mask=None, shift_x=False, shift_y=False, p0=0)

2025-01-10 15:47:30
windowed-histogram
  • References/Python/scikit-image/API Reference/filters.rank

windowed_histogram skimage.filters.rank.windowed_histogram(image, selem, out=None, mask=None, shift_x=False, shift_y=False

2025-01-10 15:47:30
equalize-hist
  • References/Python/scikit-image/API Reference/exposure

equalize_hist skimage.exposure.equalize_hist(image, nbins=256, mask=None)

2025-01-10 15:47:30