replaceChild
  • References/Ruby on Rails/Ruby/Classes/Microsoft_FreeThreadedXMLDOM_1_0

replaceChild(arg0, arg1) Instance Public methods

2025-01-10 15:47:30
Connection::useDefaultPostProcessor()
  • References/PHP/Laravel/Database

void useDefaultPostProcessor() Set the query post processor to the default

2025-01-10 15:47:30
xml.parsers.expat.xmlparser.EndDoctypeDeclHandler()
  • References/Python/Python/Structured Markup

xmlparser.EndDoctypeDeclHandler() Called when Expat is done parsing the document type declaration. This requires Expat version

2025-01-10 15:47:30
winfo_fpixels
  • References/Ruby on Rails/Ruby/Classes/TkWinfo

winfo_fpixels(dist) Instance Public methods

2025-01-10 15:47:30
Pivot::setTouchedRelations()
  • References/PHP/Laravel/Database/Eloquent/Relations

$this setTouchedRelations(array $touches) Set the relationships that are

2025-01-10 15:47:30
pyclbr.readmodule()
  • References/Python/Python/Language

pyclbr.readmodule(module, path=None) Read a module and return a dictionary mapping class names to class descriptor objects.

2025-01-10 15:47:30
tf.image.resize_nearest_neighbor()
  • References/Big Data/TensorFlow/TensorFlow Python/Images

tf.image.resize_nearest_neighbor(images, size, align_corners=None, name=None) Resize images to size

2025-01-10 15:47:30
tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.__init__(df, mu, sigma, validate_args=False, allow_nan_stats=True, name='StudentTWithAbsDfSoftplusSigma')

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.value_type
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.value_type

2025-01-10 15:47:30
tf.contrib.distributions.BaseDistribution.sample_n()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.BaseDistribution.sample_n(n, seed=None, name='sample') Generate n samples.

2025-01-10 15:47:30