Ridge Regression is the estimator used in this example. Each color in the left plot represents one different dimension of the coefficient vector, and this is displayed as a function of the regularization parameter. The right plot shows how exact the solution is. This example illustrates how a well defined solution is found by Ridge regression and how regularization affects the coefficients and their values. The plot on the right shows how the difference of the coefficients from the estimator c
class numpy.polynomial.legendre.Legendre(coef, domain=None, window=None)
Series.to_json(path_or_buf=None, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None
DataFrame.combineMult(other)
load_module(name=None) Concrete implementation of importlib.abc.Loader.load_module() where specifying the name
statsmodels.discrete.discrete_model.Poisson.loglike
output A list of str
ndarray.__ne__ x.__ne__(y) <==> x!=y
statsmodels.sandbox.tsa.fftarma.ArmaFft.spdpoly ArmaFft
class DateField(**kwargs) [source] Default widget:
Page 100 of 100