random.choice()
  • References/Python/Python/Numeric & Mathematical

random.choice(seq) Return a random element from the non-empty sequence seq. If seq is empty, raises

2025-01-10 15:47:30
decimal.Context.multiply()
  • References/Python/Python/Numeric & Mathematical

multiply(x, y) Return the product of x and y.

2025-01-10 15:47:30
statistics.mode()
  • References/Python/Python/Numeric & Mathematical

statistics.mode(data) Return the most common data point from discrete or nominal data. The mode (when it exists) is

2025-01-10 15:47:30
random.normalvariate()
  • References/Python/Python/Numeric & Mathematical

random.normalvariate(mu, sigma) Normal distribution. mu is the mean, and sigma is the standard deviation.

2025-01-10 15:47:30
decimal.Context.shift()
  • References/Python/Python/Numeric & Mathematical

shift(x, y) Returns a shifted copy of x, y times.

2025-01-10 15:47:30
decimal.Decimal.ln()
  • References/Python/Python/Numeric & Mathematical

ln(context=None) Return the natural (base e) logarithm of the operand. The result is correctly rounded using the ROUND_HALF_EVEN

2025-01-10 15:47:30
decimal.Context.divmod()
  • References/Python/Python/Numeric & Mathematical

divmod(x, y) Divides two numbers and returns the integer part of the result.

2025-01-10 15:47:30
decimal.Decimal.rotate()
  • References/Python/Python/Numeric & Mathematical

rotate(other, context=None) Return the result of rotating the digits of the first operand by an amount specified by the second

2025-01-10 15:47:30
statistics.pstdev()
  • References/Python/Python/Numeric & Mathematical

statistics.pstdev(data, mu=None) Return the population standard deviation (the square root of the population variance). See

2025-01-10 15:47:30
decimal.Context.remainder_near()
  • References/Python/Python/Numeric & Mathematical

remainder_near(x, y) Returns x - y * n, where n is the integer nearest the exact value of x / y

2025-01-10 15:47:30