math.log1p()
  • References/Python/Python/Numeric & Mathematical

math.log1p(x) Return the natural logarithm of 1+x (base e). The result is calculated in a way which is accurate

2025-01-10 15:47:30
decimal.Decimal.remainder_near()
  • References/Python/Python/Numeric & Mathematical

remainder_near(other, context=None) Return the remainder from dividing self by other. This differs from self

2025-01-10 15:47:30
cmath.sin()
  • References/Python/Python/Numeric & Mathematical

cmath.sin(x) Return the sine of x.

2025-01-10 15:47:30
decimal.Decimal.to_integral_value()
  • References/Python/Python/Numeric & Mathematical

to_integral_value(rounding=None, context=None) Round to the nearest integer without signaling Inexact or Rounded

2025-01-10 15:47:30
decimal.Underflow
  • References/Python/Python/Numeric & Mathematical

class decimal.Underflow Numerical underflow with result rounded to zero. Occurs when a subnormal

2025-01-10 15:47:30
decimal.Context.is_normal()
  • References/Python/Python/Numeric & Mathematical

is_normal(x) Returns True if x is a normal number; otherwise returns False.

2025-01-10 15:47:30
cmath.asin()
  • References/Python/Python/Numeric & Mathematical

cmath.asin(x) Return the arc sine of x. This has the same branch cuts as acos().

2025-01-10 15:47:30
random.gauss()
  • References/Python/Python/Numeric & Mathematical

random.gauss(mu, sigma) Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is

2025-01-10 15:47:30
random.lognormvariate()
  • References/Python/Python/Numeric & Mathematical

random.lognormvariate(mu, sigma) Log normal distribution. If you take the natural logarithm of this distribution, you’ll get

2025-01-10 15:47:30
statistics.pvariance()
  • References/Python/Python/Numeric & Mathematical

statistics.pvariance(data, mu=None) Return the population variance of data, a non-empty iterable of real-valued numbers

2025-01-10 15:47:30