decimal.Underflow
  • References/Python/Python/Numeric & Mathematical

class decimal.Underflow Numerical underflow with result rounded to zero. Occurs when a subnormal

2025-01-10 15:47:30
decimal.Context.quantize()
  • References/Python/Python/Numeric & Mathematical

quantize(x, y) Returns a value equal to x (rounded), having the exponent of y.

2025-01-10 15:47:30
decimal.Decimal.normalize()
  • References/Python/Python/Numeric & Mathematical

normalize(context=None) Normalize the number by stripping the rightmost trailing zeros and converting any result equal to

2025-01-10 15:47:30
math.log1p()
  • References/Python/Python/Numeric & Mathematical

math.log1p(x) Return the natural logarithm of 1+x (base e). The result is calculated in a way which is accurate

2025-01-10 15:47:30
decimal.Decimal.remainder_near()
  • References/Python/Python/Numeric & Mathematical

remainder_near(other, context=None) Return the remainder from dividing self by other. This differs from self

2025-01-10 15:47:30
cmath.sin()
  • References/Python/Python/Numeric & Mathematical

cmath.sin(x) Return the sine of x.

2025-01-10 15:47:30
random.gauss()
  • References/Python/Python/Numeric & Mathematical

random.gauss(mu, sigma) Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is

2025-01-10 15:47:30
random.lognormvariate()
  • References/Python/Python/Numeric & Mathematical

random.lognormvariate(mu, sigma) Log normal distribution. If you take the natural logarithm of this distribution, you’ll get

2025-01-10 15:47:30
decimal.InvalidOperation
  • References/Python/Python/Numeric & Mathematical

class decimal.InvalidOperation An invalid operation was performed. Indicates that an operation

2025-01-10 15:47:30
cmath.pi
  • References/Python/Python/Numeric & Mathematical

cmath.pi The mathematical constant π, as a float.

2025-01-10 15:47:30