tf.contrib.distributions.NormalWithSoftplusSigma.get_event_shape()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.NormalWithSoftplusSigma.get_event_shape() Shape of a single sample from a single batch as a TensorShape

2025-01-10 15:47:30
tf.contrib.distributions.Multinomial.param_static_shapes()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Multinomial.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes

2025-01-10 15:47:30
tf.contrib.distributions.WishartFull.is_reparameterized
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.WishartFull.is_reparameterized

2025-01-10 15:47:30
tf.contrib.distributions.Uniform.mean()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Uniform.mean(name='mean') Mean.

2025-01-10 15:47:30
tf.contrib.learn.monitors.LoggingTrainable.every_n_step_end()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.LoggingTrainable.every_n_step_end(step, outputs)

2025-01-10 15:47:30
tf.contrib.losses.cosine_distance()
  • References/Big Data/TensorFlow/TensorFlow Python/Losses

tf.contrib.losses.cosine_distance(predictions, targets, dim, weight=1.0, scope=None) Adds a cosine-distance loss to the training

2025-01-10 15:47:30
tf.contrib.learn.monitors.ValidationMonitor.every_n_step_begin()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.ValidationMonitor.every_n_step_begin(step) Callback before every n'th step begins.

2025-01-10 15:47:30
tf.contrib.learn.monitors.CaptureVariable
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

class tf.contrib.learn.monitors.CaptureVariable Captures a variable's values into a collection. This

2025-01-10 15:47:30
tf.imag()
  • References/Big Data/TensorFlow/TensorFlow Python/Math

tf.imag(input, name=None) Returns the imaginary part of a complex number. Given a tensor input

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.BetaTensor.mean()
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.BetaTensor.mean(name='mean')

2025-01-10 15:47:30