tf.contrib.distributions.QuantizedDistribution.prob()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.QuantizedDistribution.prob(value, name='prob') Probability density/mass function (depending on

2025-01-10 15:47:30
tf.contrib.losses.cosine_distance()
  • References/Big Data/TensorFlow/TensorFlow Python/Losses

tf.contrib.losses.cosine_distance(predictions, targets, dim, weight=1.0, scope=None) Adds a cosine-distance loss to the training

2025-01-10 15:47:30
tf.contrib.distributions.BetaWithSoftplusAB.event_shape()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.BetaWithSoftplusAB.event_shape(name='event_shape') Shape of a single sample from a single batch as a

2025-01-10 15:47:30
tf.contrib.distributions.GammaWithSoftplusAlphaBeta.mean()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.mean(name='mean') Mean.

2025-01-10 15:47:30
tf.contrib.learn.TensorFlowRNNRegressor.evaluate()
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

tf.contrib.learn.TensorFlowRNNRegressor.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None)

2025-01-10 15:47:30
tf.RandomShuffleQueue
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

class tf.RandomShuffleQueue A queue implementation that dequeues elements in a random order. See

2025-01-10 15:47:30
tf.contrib.graph_editor.compute_boundary_ts()
  • References/Big Data/TensorFlow/TensorFlow Python/Graph Editor

tf.contrib.graph_editor.compute_boundary_ts(ops, ambiguous_ts_are_outputs=True) Compute the tensors at the boundary of a set of

2025-01-10 15:47:30
tf.contrib.distributions.Distribution.mode()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Distribution.mode(name='mode') Mode.

2025-01-10 15:47:30
tf.contrib.learn.monitors.StepCounter.epoch_end()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.StepCounter.epoch_end(epoch) End epoch. Args:

2025-01-10 15:47:30
tf.nn.rnn_cell.OutputProjectionWrapper.zero_state()
  • References/Big Data/TensorFlow/TensorFlow Python/Neural Network RNN Cells

tf.nn.rnn_cell.OutputProjectionWrapper.zero_state(batch_size, dtype) Return zero-filled state tensor(s).

2025-01-10 15:47:30