tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.entropy()
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.entropy(name='entropy')

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)

2025-01-10 15:47:30
tf.contrib.distributions.GammaWithSoftplusAlphaBeta.sample()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.sample(sample_shape=(), seed=None, name='sample') Generate samples of the

2025-01-10 15:47:30
tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_survival_function()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_survival_function(value, name='log_survival_function') Log survival function

2025-01-10 15:47:30
tf.matching_files()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.matching_files(pattern, name=None) Returns the set of files matching a pattern. Note that this

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.entropy()
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.entropy(name='entropy')

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.GammaTensor.clone()
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.clone(name=None, **dist_args)

2025-01-10 15:47:30
tf.contrib.distributions.Multinomial.
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Multinomial.__init__(n, logits=None, p=None, validate_args=False, allow_nan_stats=True, name='Multinomial') Initialize

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)

2025-01-10 15:47:30
tf.contrib.distributions.Exponential.allow_nan_stats
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Exponential.allow_nan_stats Python boolean describing behavior when a stat is undefined.

2025-01-10 15:47:30