tf.contrib.learn.monitors.CaptureVariable.every_n_post_step()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.CaptureVariable.every_n_post_step(step, session) Callback after a step is finished or end()

2025-01-10 15:47:30
tf.contrib.distributions.Bernoulli.validate_args
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Bernoulli.validate_args Python boolean indicated possibly expensive checks are enabled.

2025-01-10 15:47:30
tf.contrib.distributions.Poisson.event_shape()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Poisson.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor

2025-01-10 15:47:30
tf.IdentityReader.
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.IdentityReader.__init__(name=None) Create a IdentityReader. Args:

2025-01-10 15:47:30
tf.contrib.distributions.Poisson.get_event_shape()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Poisson.get_event_shape() Shape of a single sample from a single batch as a TensorShape

2025-01-10 15:47:30
tf.contrib.distributions.Categorical.variance()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Categorical.variance(name='variance') Variance.

2025-01-10 15:47:30
tf.sub()
  • References/Big Data/TensorFlow/TensorFlow Python/Math

tf.sub(x, y, name=None) Returns x - y element-wise. NOTE: Sub supports broadcasting

2025-01-10 15:47:30
tf.contrib.distributions.Chi2.dtype
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Chi2.dtype The DType of Tensors handled by this Distribution.

2025-01-10 15:47:30
tf.contrib.learn.TensorFlowRNNRegressor.fit()
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

tf.contrib.learn.TensorFlowRNNRegressor.fit(x, y, steps=None, monitors=None, logdir=None) Neural network model from provided

2025-01-10 15:47:30
tf.contrib.distributions.WishartCholesky.variance()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.WishartCholesky.variance(name='variance') Variance.

2025-01-10 15:47:30