tf.QueueBase.from_list()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.QueueBase.from_list(index, queues) Create a queue using the queue reference from queues[index].

2025-01-10 15:47:30
tf.contrib.learn.monitors.StopAtStep.begin()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.StopAtStep.begin(max_steps=None) Called at the beginning of training. When

2025-01-10 15:47:30
tf.contrib.graph_editor.select_ops_and_ts()
  • References/Big Data/TensorFlow/TensorFlow Python/Graph Editor

tf.contrib.graph_editor.select_ops_and_ts(*args, **kwargs) Helper to select operations and tensors. Args:

2025-01-10 15:47:30
tf.inv()
  • References/Big Data/TensorFlow/TensorFlow Python/Math

tf.inv(x, name=None) Computes the reciprocal of x element-wise. I.e., \(y = 1 / x\).

2025-01-10 15:47:30
tf.contrib.distributions.Categorical.
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Categorical.__init__(logits, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='Categorical') Initialize

2025-01-10 15:47:30
tf.contrib.distributions.Categorical.entropy()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Categorical.entropy(name='entropy') Shanon entropy in nats.

2025-01-10 15:47:30
tf.contrib.distributions.GammaWithSoftplusAlphaBeta.get_event_shape()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.get_event_shape() Shape of a single sample from a single batch as a TensorShape

2025-01-10 15:47:30
tf.contrib.rnn.LSTMBlockCell.
  • References/Big Data/TensorFlow/TensorFlow Python/RNN

tf.contrib.rnn.LSTMBlockCell.__init__(num_units, forget_bias=1.0, use_peephole=False) Initialize the basic LSTM cell.

2025-01-10 15:47:30
tf.contrib.distributions.ExponentialWithSoftplusLam.param_shapes()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.ExponentialWithSoftplusLam.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of

2025-01-10 15:47:30
tf.contrib.framework.convert_to_tensor_or_sparse_tensor()
  • References/Big Data/TensorFlow/TensorFlow Python/Framework

tf.contrib.framework.convert_to_tensor_or_sparse_tensor(value, dtype=None, name=None, as_ref=False) Converts value to a

2025-01-10 15:47:30