tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.clone()
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.clone(name=None, **dist_args)

2025-01-10 15:47:30
tf.contrib.learn.monitors.StepCounter.epoch_end()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.StepCounter.epoch_end(epoch) End epoch. Args:

2025-01-10 15:47:30
tensorflow::Env::RenameFile()
  • References/Big Data/TensorFlow/TensorFlow C++/Env

Status tensorflow::Env::RenameFile(const string &src, const string &target) Renames file src to target. If target already

2025-01-10 15:47:30
tf.contrib.distributions.Beta.std()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Beta.std(name='std') Standard deviation.

2025-01-10 15:47:30
tf.contrib.learn.monitors.RunHookAdapterForMonitors.begin()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.RunHookAdapterForMonitors.begin()

2025-01-10 15:47:30
tf.contrib.learn.monitors.GraphDump.begin()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.GraphDump.begin(max_steps=None)

2025-01-10 15:47:30
tf.contrib.graph_editor.SubGraphView.
  • References/Big Data/TensorFlow/TensorFlow Python/Graph Editor

tf.contrib.graph_editor.SubGraphView.__init__(inside_ops=(), passthrough_ts=()) Create a subgraph containing the given ops and

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.distribution
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.distribution

2025-01-10 15:47:30
tensorflow::WritableFile::Sync()
  • References/Big Data/TensorFlow/TensorFlow C++/WritableFile

virtual Status tensorflow::WritableFile::Sync()=0

2025-01-10 15:47:30
tf.minimum()
  • References/Big Data/TensorFlow/TensorFlow Python/Math

tf.minimum(x, y, name=None) Returns the min of x and y (i.e. x < y ? x : y) element-wise. NOTE:

2025-01-10 15:47:30