void tensorflow::Status::operator=(const Status &s)
tf.contrib.distributions.Uniform.log_survival_function(value, name='log_survival_function') Log survival function.
tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sample_n(n, seed=None, name='sample_n') Generate n samples
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.name
tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.name
tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.entropy(name='entropy')
tf.contrib.learn.TensorFlowEstimator.fit(x, y, steps=None, monitors=None, logdir=None) Neural network model from provided model_fn
tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sample(sample_shape=(), seed=None, name='sample') Generate samples of
tf.contrib.distributions.MultivariateNormalFull.name Name prepended to all ops created by this Distribution.
class tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma StudentT with df = floor(abs(df)) and sigma =
Page 5 of 100