tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.dtype
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.dtype

2025-01-10 15:47:30
tf.contrib.framework.create_global_step()
  • References/Big Data/TensorFlow/TensorFlow Python/Framework

tf.contrib.framework.create_global_step(graph=None) Create global step tensor in graph. Args:

2025-01-10 15:47:30
tf.nn.rnn_cell.BasicLSTMCell.zero_state()
  • References/Big Data/TensorFlow/TensorFlow Python/Neural Network RNN Cells

tf.nn.rnn_cell.BasicLSTMCell.zero_state(batch_size, dtype) Return zero-filled state tensor(s). Args:

2025-01-10 15:47:30
tf.contrib.learn.monitors.PrintTensor.epoch_end()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.PrintTensor.epoch_end(epoch) End epoch. Args:

2025-01-10 15:47:30
tf.contrib.distributions.WishartCholesky.variance()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.WishartCholesky.variance(name='variance') Variance.

2025-01-10 15:47:30
tf.contrib.learn.monitors.SummarySaver.every_n_step_begin()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.SummarySaver.every_n_step_begin(step)

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.distribution
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.distribution

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.MeanValue.popped_above()
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.MeanValue.popped_above(unused_value_type)

2025-01-10 15:47:30
tf.nn.rnn_cell.LSTMStateTuple.
  • References/Big Data/TensorFlow/TensorFlow Python/Neural Network RNN Cells

tf.nn.rnn_cell.LSTMStateTuple.__new__(_cls, c, h) Create new instance of LSTMStateTuple(c, h)

2025-01-10 15:47:30
tf.contrib.distributions.Exponential.param_static_shapes()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Exponential.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes

2025-01-10 15:47:30