tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.UniformTensor.value_type
tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.name
tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.MeanValue.popped_above(unused_value_type)
tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.SampleValue.__init__(n=1, stop_gradient=False) Sample n times and concatenate
tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.BetaTensor.dtype
Page 16 of 52