tf.contrib.rnn.LSTMBlockCell.zero_state()
  • References/Big Data/TensorFlow/TensorFlow Python/RNN

tf.contrib.rnn.LSTMBlockCell.zero_state(batch_size, dtype) Return zero-filled state tensor(s). Args:

2025-01-10 15:47:30
tf.contrib.rnn.GRUBlockCell.output_size
  • References/Big Data/TensorFlow/TensorFlow Python/RNN

tf.contrib.rnn.GRUBlockCell.output_size

2025-01-10 15:47:30
tf.contrib.rnn.LSTMBlockCell
  • References/Big Data/TensorFlow/TensorFlow Python/RNN

class tf.contrib.rnn.LSTMBlockCell Basic LSTM recurrent network cell. The implementation is based

2025-01-10 15:47:30
tf.contrib.rnn.GridLSTMCell.
  • References/Big Data/TensorFlow/TensorFlow Python/RNN

tf.contrib.rnn.GridLSTMCell.__call__(inputs, state, scope=None) Run one step of LSTM. Args:

2025-01-10 15:47:30
tf.contrib.rnn.GRUBlockCell.state_size
  • References/Big Data/TensorFlow/TensorFlow Python/RNN

tf.contrib.rnn.GRUBlockCell.state_size

2025-01-10 15:47:30
tf.contrib.rnn.LayerNormBasicLSTMCell
  • References/Big Data/TensorFlow/TensorFlow Python/RNN

class tf.contrib.rnn.LayerNormBasicLSTMCell LSTM unit with layer normalization and recurrent dropout. This

2025-01-10 15:47:30
tf.contrib.rnn.LSTMBlockCell.state_size
  • References/Big Data/TensorFlow/TensorFlow Python/RNN

tf.contrib.rnn.LSTMBlockCell.state_size

2025-01-10 15:47:30
tf.contrib.rnn.AttentionCellWrapper.zero_state()
  • References/Big Data/TensorFlow/TensorFlow Python/RNN

tf.contrib.rnn.AttentionCellWrapper.zero_state(batch_size, dtype) Return zero-filled state tensor(s).

2025-01-10 15:47:30
tf.contrib.rnn.AttentionCellWrapper.
  • References/Big Data/TensorFlow/TensorFlow Python/RNN

tf.contrib.rnn.AttentionCellWrapper.__call__(inputs, state, scope=None) Long short-term memory cell with attention (LSTMA).

2025-01-10 15:47:30
tf.contrib.rnn.TimeFreqLSTMCell.state_size
  • References/Big Data/TensorFlow/TensorFlow Python/RNN

tf.contrib.rnn.TimeFreqLSTMCell.state_size

2025-01-10 15:47:30