-
DataFrame.quantile(q=0.5, axis=0, numeric_only=True, interpolation='linear')
[source] -
Return values at the given quantile over requested axis, a la numpy.percentile.
Parameters: q : float or array-like, default 0.5 (50% quantile)
0 <= q <= 1, the quantile(s) to compute
axis : {0, 1, ?index?, ?columns?} (default 0)
0 or ?index? for row-wise, 1 or ?columns? for column-wise
interpolation : {?linear?, ?lower?, ?higher?, ?midpoint?, ?nearest?}
New in version 0.18.0.
This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points
i
andj
:- linear:
i + (j - i) * fraction
, wherefraction
is the fractional part of the index surrounded byi
andj
. - lower:
i
. - higher:
j
. - nearest:
i
orj
whichever is nearest. - midpoint: (
i
+j
) / 2.
Returns: quantiles : Series or DataFrame
- If
q
is an array, a DataFrame will be returned where the index isq
, the columns are the columns of self, and the values are the quantiles. - If
q
is a float, a Series will be returned where the index is the columns of self and the values are the quantiles.
Examples
12345678910>>> df
=
DataFrame(np.array([[
1
,
1
], [
2
,
10
], [
3
,
100
], [
4
,
100
]]),
columns
=
[
'a'
,
'b'
])
>>> df.quantile(.
1
)
a
1.3
b
3.7
dtype: float64
>>> df.quantile([.
1
, .
5
])
a b
0.1
1.3
3.7
0.5
2.5
55.0
- linear:
DataFrame.quantile()

2025-01-10 15:47:30
Please login to continue.