-
DataFrame.select_dtypes(include=None, exclude=None)
[source] -
Return a subset of a DataFrame including/excluding columns based on their
dtype
.Parameters: include, exclude : list-like
A list of dtypes or strings to be included/excluded. You must pass in a non-empty sequence for at least one of these.
Returns: subset : DataFrame
The subset of the frame including the dtypes in
include
and excluding the dtypes inexclude
.Raises: ValueError
- If both of
include
andexclude
are empty - If
include
andexclude
have overlapping elements - If any kind of string dtype is passed in.
TypeError
- If either of
include
orexclude
is not a sequence
Notes
- To select all numeric types use the numpy dtype
numpy.number
- To select strings you must use the
object
dtype, but note that this will return all object dtype columns - See the numpy dtype hierarchy
- To select Pandas categorical dtypes, use ?category?
Examples
123456789101112131415161718192021222324252627>>> df
=
pd.DataFrame({
'a'
: np.random.randn(
6
).astype(
'f4'
),
...
'b'
: [
True
,
False
]
*
3
,
...
'c'
: [
1.0
,
2.0
]
*
3
})
>>> df
a b c
0
0.3962
True
1
1
0.1459
False
2
2
0.2623
True
1
3
0.0764
False
2
4
-
0.9703
True
1
5
-
1.2094
False
2
>>> df.select_dtypes(include
=
[
'float64'
])
c
0
1
1
2
2
1
3
2
4
1
5
2
>>> df.select_dtypes(exclude
=
[
'floating'
])
b
0
True
1
False
2
True
3
False
4
True
5
False
- If both of
DataFrame.select_dtypes()

2025-01-10 15:47:30
Please login to continue.