-
pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False)
[source] -
Convert categorical variable into dummy/indicator variables
Parameters: data : array-like, Series, or DataFrame
prefix : string, list of strings, or dict of strings, default None
String to append DataFrame column names Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternativly,
prefix
can be a dictionary mapping column names to prefixes.prefix_sep : string, default ?_?
If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with
prefix.
dummy_na : bool, default False
Add a column to indicate NaNs, if False NaNs are ignored.
columns : list-like, default None
Column names in the DataFrame to be encoded. If
columns
is None then all the columns withobject
orcategory
dtype will be converted.sparse : bool, default False
Whether the dummy columns should be sparse or not. Returns SparseDataFrame if
data
is a Series or if all columns are included. Otherwise returns a DataFrame with some SparseBlocks.New in version 0.16.1.
drop_first : bool, default False
Whether to get k-1 dummies out of k categorical levels by removing the first level.
New in version 0.18.0.
Returns
??-
dummies : DataFrame or SparseDataFrame
See also
Examples
12>>>
import
pandas as pd
>>> s
=
pd.Series(
list
(
'abca'
))
123456>>> pd.get_dummies(s)
a b c
0
1
0
0
1
0
1
0
2
0
0
1
3
1
0
0
1>>> s1
=
[
'a'
,
'b'
, np.nan]
12345>>> pd.get_dummies(s1)
a b
0
1
0
1
0
1
2
0
0
12345>>> pd.get_dummies(s1, dummy_na
=
True
)
a b NaN
0
1
0
0
1
0
1
0
2
0
0
1
12>>> df
=
pd.DataFrame({
'A'
: [
'a'
,
'b'
,
'a'
],
'B'
: [
'b'
,
'a'
,
'c'
],
'C'
: [
1
,
2
,
3
]})
12345>>> pd.get_dummies(df, prefix
=
[
'col1'
,
'col2'
])
C col1_a col1_b col2_a col2_b col2_c
0
1
1
0
0
1
0
1
2
0
1
1
0
0
2
3
1
0
0
0
1
1234567>>> pd.get_dummies(pd.Series(
list
(
'abcaa'
)))
a b c
0
1
0
0
1
0
1
0
2
0
0
1
3
1
0
0
4
1
0
0
1234567>>> pd.get_dummies(pd.Series(
list
(
'abcaa'
)), drop_first
=
True
))
b c
0
0
0
1
1
0
2
0
1
3
0
0
4
0
0
pandas.get_dummies()

2025-01-10 15:47:30
Please login to continue.