-
Series.apply(func, convert_dtype=True, args=(), **kwds)
[source] -
Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values
Parameters: func : function
convert_dtype : boolean, default True
Try to find better dtype for elementwise function results. If False, leave as dtype=object
args : tuple
Positional arguments to pass to function in addition to the value
Additional keyword arguments will be passed as keywords to the function
Returns: y : Series or DataFrame if func returns a Series
See also
-
Series.map
- For element-wise operations
Examples
Create a series with typical summer temperatures for each city.
12345678>>>
import
pandas as pd
>>>
import
numpy as np
>>> series
=
pd.Series([
20
,
21
,
12
], index
=
[
'London'
,
...
'New York'
,
'Helsinki'
])
London
20
New York
21
Helsinki
12
dtype: int64
Square the values by defining a function and passing it as an argument to
apply()
.1234567>>>
def
square(x):
...
return
x
*
*
2
>>> series.
apply
(square)
London
400
New York
441
Helsinki
144
dtype: int64
Square the values by passing an anonymous function as an argument to
apply()
.12345>>> series.
apply
(
lambda
x: x
*
*
2
)
London
400
New York
441
Helsinki
144
dtype: int64
Define a custom function that needs additional positional arguments and pass these additional arguments using the
args
keyword.12>>>
def
subtract_custom_value(x, custom_value):
...
return
x
-
custom_value
12345>>> series.
apply
(subtract_custom_value, args
=
(
5
,))
London
15
New York
16
Helsinki
7
dtype: int64
Define a custom function that takes keyword arguments and pass these arguments to
apply
.1234>>>
def
add_custom_values(x,
*
*
kwargs):
...
for
month
in
kwargs:
... x
+
=
kwargs[month]
...
return
x
12345>>> series.
apply
(add_custom_values, june
=
30
, july
=
20
, august
=
25
)
London
95
New York
96
Helsinki
87
dtype: int64
Use a function from the Numpy library.
12345>>> series.
apply
(np.log)
London
2.995732
New York
3.044522
Helsinki
2.484907
dtype: float64
-
Series.apply()

2025-01-10 15:47:30
Please login to continue.