statsmodels.regression.mixed_linear_model.MixedLM.Estep
-
MixedLM.Estep(fe_params, cov_re, scale)[source] -
The E-step of the EM algorithm.
This is for ML (not REML), but it seems to be good enough to use for REML starting values.
Parameters: fe_params : 1d ndarray
The current value of the fixed effect coefficients
cov_re : 2d ndarray
The current value of the covariance matrix of random effects
scale : positive scalar
The current value of the error variance
Returns: m1x : 1d ndarray
sum_groups
, where X and Z are the fixed and random effects covariates, gamma is the random effects, and Y is the observed datam1y : scalar
sum_groups
![Y'*E[gamma | Y]](http://statsmodels.sourceforge.net/stable/_images/math/923e5d4933f059d9672ae2e53b68061514fe21dd.png)
m2 : 2d ndarray
sum_groups
![E[gamma * gamma' | Y]](http://statsmodels.sourceforge.net/stable/_images/math/59f1f750b51668d9d5fdd7b8306b68062fc9233d.png)
m2xx : 2d ndarray
sum_groups
![Z'*Z * E[gamma * gamma' | Y]](http://statsmodels.sourceforge.net/stable/_images/math/8970aa416b6213058663fbe86295889b7b456444.png)
Please login to continue.