statsmodels.regression.mixed_linear_model.MixedLM.from_formula
-
classmethod MixedLM.from_formula(formula, data, re_formula=None, subset=None, *args, **kwargs)
[source] -
Create a Model from a formula and dataframe.
Parameters: formula : str or generic Formula object
The formula specifying the model
data : array-like
The data for the model. See Notes.
re_formula : string
A one-sided formula defining the variance structure of the model. The default gives a random intercept for each group.
subset : array-like
An array-like object of booleans, integers, or index values that indicate the subset of df to use in the model. Assumes df is a
pandas.DataFrame
args : extra arguments
These are passed to the model
kwargs : extra keyword arguments
These are passed to the model with one exception. The
eval_env
keyword is passed to patsy. It can be either apatsy.EvalEnvironment
object or an integer indicating the depth of the namespace to use. For example, the defaulteval_env=0
uses the calling namespace. If you wish to use a ?clean? environment seteval_env=-1
.Returns: model : Model instance
Notes
data
must define __getitem__ with the keys in the formula terms args and kwargs are passed on to the model instantiation. E.g., a numpy structured or rec array, a dictionary, or a pandas DataFrame.If
re_formula
is not provided, the default is a random intercept for each group.This method currently does not correctly handle missing values, so missing values should be explicitly dropped from the DataFrame before calling this method.
Please login to continue.