statsmodels.duration.hazard_regression.PHReg.from_formula
-
classmethod PHReg.from_formula(formula, data, status=None, entry=None, strata=None, offset=None, subset=None, ties='breslow', missing='drop', *args, **kwargs)
[source] -
Create a proportional hazards regression model from a formula and dataframe.
Parameters: formula : str or generic Formula object
The formula specifying the model
data : array-like
The data for the model. See Notes.
status : array-like
The censoring status values; status=1 indicates that an event occured (e.g. failure or death), status=0 indicates that the observation was right censored. If None, defaults to status=1 for all cases.
entry : array-like
The entry times, if left truncation occurs
strata : array-like
Stratum labels. If None, all observations are taken to be in a single stratum.
offset : array-like
Array of offset values
subset : array-like
An array-like object of booleans, integers, or index values that indicate the subset of df to use in the model. Assumes df is a
pandas.DataFrame
ties : string
The method used to handle tied times, must be either ?breslow? or ?efron?.
missing : string
The method used to handle missing data
args : extra arguments
These are passed to the model
kwargs : extra keyword arguments
These are passed to the model with one exception. The
eval_env
keyword is passed to patsy. It can be either apatsy.EvalEnvironment
object or an integer indicating the depth of the namespace to use. For example, the defaulteval_env=0
uses the calling namespace. If you wish to use a ?clean? environment seteval_env=-1
.Returns: model : PHReg model instance
Please login to continue.