statsmodels.stats.proportion.proportion_effectsize
-
statsmodels.stats.proportion.proportion_effectsize(prop1, prop2, method='normal')
[source] -
effect size for a test comparing two proportions
for use in power function
Parameters: prop1, prop2: float or array_like :
Returns: es : float or ndarray
effect size for (transformed) prop1 - prop2
Notes
only method=?normal? is implemented to match pwr.p2.test see http://www.statmethods.net/stats/power.html
Effect size for
normal
is defined as12
*
(arcsin(sqrt(prop1))
-
arcsin(sqrt(prop2)))
I think other conversions to normality can be used, but I need to check.
Examples
1234>>> smpr.proportion_effectsize(
0.5
,
0.4
)
0.20135792079033088
>>> smpr.proportion_effectsize([
0.3
,
0.4
,
0.5
],
0.4
)
array([
-
0.21015893
,
0.
,
0.20135792
])
Please login to continue.