rescale_intensity
-
skimage.exposure.rescale_intensity(image, in_range='image', out_range='dtype')
[source] -
Return image after stretching or shrinking its intensity levels.
The desired intensity range of the input and output,
in_range
andout_range
respectively, are used to stretch or shrink the intensity range of the input image. See examples below.Parameters: image : array
Image array.
in_range, out_range : str or 2-tuple
Min and max intensity values of input and output image. The possible values for this parameter are enumerated below.
- ‘image’
-
Use image min/max as the intensity range.
- ‘dtype’
-
Use min/max of the image’s dtype as the intensity range.
- dtype-name
-
Use intensity range based on desired
dtype
. Must be valid key inDTYPE_RANGE
. - 2-tuple
-
Use
range_values
as explicit min/max intensities.
Returns: out : array
Image array after rescaling its intensity. This image is the same dtype as the input image.
See also
Examples
By default, the min/max intensities of the input image are stretched to the limits allowed by the image’s dtype, since
in_range
defaults to ‘image’ andout_range
defaults to ‘dtype’:123>>> image
=
np.array([
51
,
102
,
153
], dtype
=
np.uint8)
>>> rescale_intensity(image)
array([
0
,
127
,
255
], dtype
=
uint8)
It’s easy to accidentally convert an image dtype from uint8 to float:
12>>>
1.0
*
image
array([
51.
,
102.
,
153.
])
Use
rescale_intensity
to rescale to the proper range for float dtypes:123>>> image_float
=
1.0
*
image
>>> rescale_intensity(image_float)
array([
0.
,
0.5
,
1.
])
To maintain the low contrast of the original, use the
in_range
parameter:12>>> rescale_intensity(image_float, in_range
=
(
0
,
255
))
array([
0.2
,
0.4
,
0.6
])
If the min/max value of
in_range
is more/less than the min/max image intensity, then the intensity levels are clipped:12>>> rescale_intensity(image_float, in_range
=
(
0
,
102
))
array([
0.5
,
1.
,
1.
])
If you have an image with signed integers but want to rescale the image to just the positive range, use the
out_range
parameter:123>>> image
=
np.array([
-
10
,
0
,
10
], dtype
=
np.int8)
>>> rescale_intensity(image, out_range
=
(
0
,
127
))
array([
0
,
63
,
127
], dtype
=
int8)
Please login to continue.