EllipseModel
-
class skimage.measure.EllipseModel
[source] -
Bases:
skimage.measure.fit.BaseModel
Total least squares estimator for 2D ellipses.
The functional model of the ellipse is:
123xt
=
xc
+
a
*
cos(theta)
*
cos(t)
-
b
*
sin(theta)
*
sin(t)
yt
=
yc
+
a
*
sin(theta)
*
cos(t)
+
b
*
cos(theta)
*
sin(t)
d
=
sqrt((x
-
xt)
*
*
2
+
(y
-
yt)
*
*
2
)
where
(xt, yt)
is the closest point on the ellipse to(x, y)
. Thus d is the shortest distance from the point to the ellipse.This estimator minimizes the squared distances from all points to the ellipse:
1min
{
sum
(d_i
*
*
2
) }
=
min
{
sum
((x_i
-
xt)
*
*
2
+
(y_i
-
yt)
*
*
2
) }
Thus you have
2 * N
equations (x_i, y_i) forN + 5
unknowns (t_i, xc, yc, a, b, theta), which gives you an effective redundancy ofN - 5
.The
params
attribute contains the parameters in the following order:1xc, yc, a, b, theta
A minimum number of 5 points is required to solve for the parameters.
Attributes
params (tuple) Ellipse model parameters in the following order xc
,yc
,a
,b
,theta
.-
__init__()
[source]
-
estimate(data)
[source] -
Estimate circle model from data using total least squares.
Parameters: data : (N, 2) array
N points with
(x, y)
coordinates, respectively.Returns: success : bool
True, if model estimation succeeds.
-
predict_xy(t, params=None)
[source] -
Predict x- and y-coordinates using the estimated model.
Parameters: t : array
Angles in circle in radians. Angles start to count from positive x-axis to positive y-axis in a right-handed system.
params : (5, ) array, optional
Optional custom parameter set.
Returns: xy : (..., 2) array
Predicted x- and y-coordinates.
-
residuals(data)
[source] -
Determine residuals of data to model.
For each point the shortest distance to the ellipse is returned.
Parameters: data : (N, 2) array
N points with
(x, y)
coordinates, respectively.Returns: residuals : (N, ) array
Residual for each data point.
-
Please login to continue.