LineModel
-
class skimage.measure.LineModel
[source] -
Bases:
skimage.measure.fit.BaseModel
Total least squares estimator for 2D lines.
Lines are parameterized using polar coordinates as functional model:
1dist
=
x
*
cos(theta)
+
y
*
sin(theta)
This parameterization is able to model vertical lines in contrast to the standard line model
y = a*x + b
.This estimator minimizes the squared distances from all points to the line:
1min
{
sum
((dist
-
x_i
*
cos(theta)
+
y_i
*
sin(theta))
*
*
2
) }
A minimum number of 2 points is required to solve for the parameters.
Deprecated class. Use
LineModelND
instead.Attributes
params (tuple) Line model parameters in the following order dist
,theta
.-
__init__()
[source]
-
estimate(data)
[source] -
Estimate line model from data using total least squares.
Parameters: data : (N, 2) array
N points with
(x, y)
coordinates, respectively.Returns: success : bool
True, if model estimation succeeds.
-
predict_x(y, params=None)
[source] -
Predict x-coordinates using the estimated model.
Parameters: y : array
y-coordinates.
params : (2, ) array, optional
Optional custom parameter set.
Returns: x : array
Predicted x-coordinates.
-
predict_y(x, params=None)
[source] -
Predict y-coordinates using the estimated model.
Parameters: x : array
x-coordinates.
params : (2, ) array, optional
Optional custom parameter set.
Returns: y : array
Predicted y-coordinates.
-
residuals(data)
[source] -
Determine residuals of data to model.
For each point the shortest distance to the line is returned.
Parameters: data : (N, 2) array
N points with
(x, y)
coordinates, respectively.Returns: residuals : (N, ) array
Residual for each data point.
-
Please login to continue.