active_contour
-
skimage.segmentation.active_contour(image, snake, alpha=0.01, beta=0.1, w_line=0, w_edge=1, gamma=0.01, bc='periodic', max_px_move=1.0, max_iterations=2500, convergence=0.1)
[source] -
Active contour model.
Active contours by fitting snakes to features of images. Supports single and multichannel 2D images. Snakes can be periodic (for segmentation) or have fixed and/or free ends.
Parameters: image : (N, M) or (N, M, 3) ndarray
Input image.
snake : (N, 2) ndarray
Initialisation coordinates of snake. For periodic snakes, it should not include duplicate endpoints.
alpha : float, optional
Snake length shape parameter. Higher values makes snake contract faster.
beta : float, optional
Snake smoothness shape parameter. Higher values makes snake smoother.
w_line : float, optional
Controls attraction to brightness. Use negative values to attract to dark regions.
w_edge : float, optional
Controls attraction to edges. Use negative values to repel snake from edges.
gamma : float, optional
Explicit time stepping parameter.
bc : {‘periodic’, ‘free’, ‘fixed’}, optional
Boundary conditions for worm. ‘periodic’ attaches the two ends of the snake, ‘fixed’ holds the end-points in place, and’free’ allows free movement of the ends. ‘fixed’ and ‘free’ can be combined by parsing ‘fixed-free’, ‘free-fixed’. Parsing ‘fixed-fixed’ or ‘free-free’ yields same behaviour as ‘fixed’ and ‘free’, respectively.
max_px_move : float, optional
Maximum pixel distance to move per iteration.
max_iterations : int, optional
Maximum iterations to optimize snake shape.
convergence: float, optional
Convergence criteria.
Returns: snake : (N, 2) ndarray
Optimised snake, same shape as input parameter.
References
[R347] Kass, M.; Witkin, A.; Terzopoulos, D. “Snakes: Active contour models”. International Journal of Computer Vision 1 (4): 321 (1988). Examples
12>>>
from
skimage.draw
import
circle_perimeter
>>>
from
skimage.filters
import
gaussian_filter
Create and smooth image:
1234>>> img
=
np.zeros((
100
,
100
))
>>> rr, cc
=
circle_perimeter(
35
,
45
,
25
)
>>> img[rr, cc]
=
1
>>> img
=
gaussian_filter(img,
2
)
Initiliaze spline:
12>>> s
=
np.linspace(
0
,
2
*
np.pi,
100
)
>>> init
=
50
*
np.array([np.cos(s), np.sin(s)]).T
+
50
Fit spline to image:
1234>>> snake
=
active_contour(img, init, w_edge
=
0
, w_line
=
1
)
>>> dist
=
np.sqrt((
45
-
snake[:,
0
])
*
*
2
+
(
35
-
snake[:,
1
])
*
*
2
)
>>>
int
(np.mean(dist))
25
Please login to continue.