find_boundaries
-
skimage.segmentation.find_boundaries(label_img, connectivity=1, mode='thick', background=0)
[source] -
Return bool array where boundaries between labeled regions are True.
Parameters: label_img : array of int or bool
An array in which different regions are labeled with either different integers or boolean values.
connectivity: int in {1, ..., `label_img.ndim`}, optional
A pixel is considered a boundary pixel if any of its neighbors has a different label.
connectivity
controls which pixels are considered neighbors. A connectivity of 1 (default) means pixels sharing an edge (in 2D) or a face (in 3D) will be considered neighbors. A connectivity oflabel_img.ndim
means pixels sharing a corner will be considered neighbors.mode: string in {‘thick’, ‘inner’, ‘outer’, ‘subpixel’}
How to mark the boundaries:
- thick: any pixel not completely surrounded by pixels of the same label (defined by
connectivity
) is marked as a boundary. This results in boundaries that are 2 pixels thick. - inner: outline the pixels just inside of objects, leaving background pixels untouched.
- outer: outline pixels in the background around object boundaries. When two objects touch, their boundary is also marked.
- subpixel: return a doubled image, with pixels between the original pixels marked as boundary where appropriate.
background: int, optional
For modes ‘inner’ and ‘outer’, a definition of a background label is required. See
mode
for descriptions of these two.Returns: boundaries : array of bool, same shape as
label_img
A bool image where
True
represents a boundary pixel. Formode
equal to ‘subpixel’,boundaries.shape[i]
is equal to2 * label_img.shape[i] - 1
for alli
(a pixel is inserted in between all other pairs of pixels).Examples
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667>>> labels
=
np.array([[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
... [
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
... [
0
,
0
,
0
,
0
,
0
,
5
,
5
,
5
,
0
,
0
],
... [
0
,
0
,
1
,
1
,
1
,
5
,
5
,
5
,
0
,
0
],
... [
0
,
0
,
1
,
1
,
1
,
5
,
5
,
5
,
0
,
0
],
... [
0
,
0
,
1
,
1
,
1
,
5
,
5
,
5
,
0
,
0
],
... [
0
,
0
,
0
,
0
,
0
,
5
,
5
,
5
,
0
,
0
],
... [
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
... [
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]], dtype
=
np.uint8)
>>> find_boundaries(labels, mode
=
'thick'
).astype(np.uint8)
array([[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
1
,
1
,
1
,
0
,
0
],
[
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
0
],
[
0
,
1
,
1
,
1
,
1
,
1
,
0
,
1
,
1
,
0
],
[
0
,
1
,
1
,
0
,
1
,
1
,
0
,
1
,
1
,
0
],
[
0
,
1
,
1
,
1
,
1
,
1
,
0
,
1
,
1
,
0
],
[
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
0
],
[
0
,
0
,
0
,
0
,
0
,
1
,
1
,
1
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]], dtype
=
uint8)
>>> find_boundaries(labels, mode
=
'inner'
).astype(np.uint8)
array([[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
1
,
1
,
1
,
0
,
0
],
[
0
,
0
,
1
,
1
,
1
,
1
,
0
,
1
,
0
,
0
],
[
0
,
0
,
1
,
0
,
1
,
1
,
0
,
1
,
0
,
0
],
[
0
,
0
,
1
,
1
,
1
,
1
,
0
,
1
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
1
,
1
,
1
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]], dtype
=
uint8)
>>> find_boundaries(labels, mode
=
'outer'
).astype(np.uint8)
array([[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
1
,
1
,
1
,
0
,
0
],
[
0
,
0
,
1
,
1
,
1
,
1
,
0
,
0
,
1
,
0
],
[
0
,
1
,
0
,
0
,
1
,
1
,
0
,
0
,
1
,
0
],
[
0
,
1
,
0
,
0
,
1
,
1
,
0
,
0
,
1
,
0
],
[
0
,
1
,
0
,
0
,
1
,
1
,
0
,
0
,
1
,
0
],
[
0
,
0
,
1
,
1
,
1
,
1
,
0
,
0
,
1
,
0
],
[
0
,
0
,
0
,
0
,
0
,
1
,
1
,
1
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]], dtype
=
uint8)
>>> labels_small
=
labels[::
2
, ::
3
]
>>> labels_small
array([[
0
,
0
,
0
,
0
],
[
0
,
0
,
5
,
0
],
[
0
,
1
,
5
,
0
],
[
0
,
0
,
5
,
0
],
[
0
,
0
,
0
,
0
]], dtype
=
uint8)
>>> find_boundaries(labels_small, mode
=
'subpixel'
).astype(np.uint8)
array([[
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
1
,
1
,
1
,
0
],
[
0
,
0
,
0
,
1
,
0
,
1
,
0
],
[
0
,
1
,
1
,
1
,
0
,
1
,
0
],
[
0
,
1
,
0
,
1
,
0
,
1
,
0
],
[
0
,
1
,
1
,
1
,
0
,
1
,
0
],
[
0
,
0
,
0
,
1
,
0
,
1
,
0
],
[
0
,
0
,
0
,
1
,
1
,
1
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
]], dtype
=
uint8)
>>> bool_image
=
np.array([[
False
,
False
,
False
,
False
,
False
],
... [
False
,
False
,
False
,
False
,
False
],
... [
False
,
False
,
True
,
True
,
True
],
... [
False
,
False
,
True
,
True
,
True
],
... [
False
,
False
,
True
,
True
,
True
]], dtype
=
np.
bool
)
>>> find_boundaries(bool_image)
array([[
False
,
False
,
False
,
False
,
False
],
[
False
,
False
,
True
,
True
,
True
],
[
False
,
True
,
True
,
True
,
True
],
[
False
,
True
,
True
,
False
,
False
],
[
False
,
True
,
True
,
False
,
False
]], dtype
=
bool
)
- thick: any pixel not completely surrounded by pixels of the same label (defined by
Please login to continue.