PolynomialTransform
-
class skimage.transform.PolynomialTransform(params=None)
[source] -
Bases:
skimage.transform._geometric.GeometricTransform
2D transformation of the form:
..:math:
X = sum[j=0:order]( sum[i=0:j]( a_ji * x**(j - i) * y**i )) Y = sum[j=0:order]( sum[i=0:j]( b_ji * x**(j - i) * y**i ))Parameters: params : (2, N) array, optional
Polynomial coefficients where
N * 2 = (order + 1) * (order + 2)
. So, a_ji is defined inparams[0, :]
and b_ji inparams[1, :]
.Attributes
params ((2, N) array) Polynomial coefficients where N * 2 = (order + 1) * (order + 2)
. So, a_ji is defined inparams[0, :]
and b_ji inparams[1, :]
.-
__init__(params=None)
[source]
-
estimate(src, dst, order=2)
[source] -
Set the transformation matrix with the explicit transformation parameters.
You can determine the over-, well- and under-determined parameters with the total least-squares method.
Number of source and destination coordinates must match.
The transformation is defined as:
12X
=
sum
[j
=
0
:order](
sum
[i
=
0
:j]( a_ji
*
x
*
*
(j
-
i)
*
y
*
*
i ))
Y
=
sum
[j
=
0
:order](
sum
[i
=
0
:j]( b_ji
*
x
*
*
(j
-
i)
*
y
*
*
i ))
These equations can be transformed to the following form:
120
=
sum
[j
=
0
:order](
sum
[i
=
0
:j]( a_ji
*
x
*
*
(j
-
i)
*
y
*
*
i ))
-
X
0
=
sum
[j
=
0
:order](
sum
[i
=
0
:j]( b_ji
*
x
*
*
(j
-
i)
*
y
*
*
i ))
-
Y
which exist for each set of corresponding points, so we have a set of N * 2 equations. The coefficients appear linearly so we can write A x = 0, where:
1234567A
=
[[
1
x y x
*
*
2
x
*
y y
*
*
2
...
0
...
0
-
X]
[
0
...
0
1
x y x
*
*
2
x
*
y y
*
*
2
-
Y]
...
...
]
x.T
=
[a00 a10 a11 a20 a21 a22 ... ann
b00 b10 b11 b20 b21 b22 ... bnn c3]
In case of total least-squares the solution of this homogeneous system of equations is the right singular vector of A which corresponds to the smallest singular value normed by the coefficient c3.
Parameters: src : (N, 2) array
Source coordinates.
dst : (N, 2) array
Destination coordinates.
order : int, optional
Polynomial order (number of coefficients is order + 1).
Returns: success : bool
True, if model estimation succeeds.
-
inverse(coords)
[source]
-
Please login to continue.