tf.contrib.ffmpeg.decode_audio()

tf.contrib.ffmpeg.decode_audio(contents, file_format=None, samples_per_second=None, channel_count=None) Create an op that decodes the contents of an audio file. Note that ffmpeg is free to select the "best" audio track from an mp4. https://trac.ffmpeg.org/wiki/Map Args: contents: The binary contents of the audio file to decode. This is a scalar. file_format: A string specifying which format the contents will conform to. This can be mp3, mp4, ogg, or wav. samples_per_second: The number of sa

tf.contrib.distributions.WishartFull.__init__()

tf.contrib.distributions.WishartFull.__init__(df, scale, cholesky_input_output_matrices=False, validate_args=False, allow_nan_stats=True, name='WishartFull') Construct Wishart distributions. Args: df: float or double Tensor. Degrees of freedom, must be greater than or equal to dimension of the scale matrix. scale: float or double Tensor. The symmetric positive definite scale matrix of the distribution. cholesky_input_output_matrices: Boolean. Any function which whose input or output is a ma

tf.contrib.distributions.WishartFull.variance()

tf.contrib.distributions.WishartFull.variance(name='variance') Variance.

tf.contrib.distributions.WishartFull.validate_args

tf.contrib.distributions.WishartFull.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.WishartFull.survival_function()

tf.contrib.distributions.WishartFull.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.WishartFull.std()

tf.contrib.distributions.WishartFull.std(name='std') Standard deviation.

tf.contrib.distributions.WishartFull.scale_operator_pd

tf.contrib.distributions.WishartFull.scale_operator_pd Wishart distribution scale matrix as an OperatorPD.

tf.contrib.distributions.WishartFull.scale()

tf.contrib.distributions.WishartFull.scale() Wishart distribution scale matrix.

tf.contrib.distributions.WishartFull.sample_n()

tf.contrib.distributions.WishartFull.sample_n(n, seed=None, name='sample_n') Generate n samples. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.contrib.distributions.WishartFull.sample()

tf.contrib.distributions.WishartFull.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.