tf.contrib.distributions.MultivariateNormalDiag.survival_function()

tf.contrib.distributions.MultivariateNormalDiag.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.MultivariateNormalDiag.std()

tf.contrib.distributions.MultivariateNormalDiag.std(name='std') Standard deviation.

tf.contrib.distributions.MultivariateNormalDiag.sigma_det()

tf.contrib.distributions.MultivariateNormalDiag.sigma_det(name='sigma_det') Determinant of covariance matrix.

tf.contrib.distributions.MultivariateNormalDiag.sigma

tf.contrib.distributions.MultivariateNormalDiag.sigma Dense (batch) covariance matrix, if available.

tf.contrib.distributions.MultivariateNormalDiag.sample_n()

tf.contrib.distributions.MultivariateNormalDiag.sample_n(n, seed=None, name='sample_n') Generate n samples. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.contrib.distributions.MultivariateNormalDiag.sample()

tf.contrib.distributions.MultivariateNormalDiag.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.MultivariateNormalDiag.prob()

tf.contrib.distributions.MultivariateNormalDiag.prob(value, name='prob') Probability density/mass function (depending on is_continuous). Additional documentation from _MultivariateNormalOperatorPD: x is a batch vector with compatible shape if x is a Tensor whose shape can be broadcast up to either: self.batch_shape + self.event_shape or [M1,...,Mm] + self.batch_shape + self.event_shape Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape

tf.contrib.distributions.MultivariateNormalDiag.pmf()

tf.contrib.distributions.MultivariateNormalDiag.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.MultivariateNormalDiag.pdf()

tf.contrib.distributions.MultivariateNormalDiag.pdf(value, name='pdf') Probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalDiag.param_static_shapes()

tf.contrib.distributions.MultivariateNormalDiag.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes. Args: sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample(). Returns: dict of parameter name to TensorShape. Raises: ValueError: if sample_shape is a TensorShape and is not fully defined.