tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.loss(final_loss, name='Loss')

tf.contrib.learn.LinearClassifier.export()

tf.contrib.learn.LinearClassifier.export(export_dir, input_fn=None, input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, default_batch_size=1, exports_to_keep=None) See BaseEstimator.export.

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.value_type

tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.value_type

tf.contrib.distributions.TransformedDistribution.pmf()

tf.contrib.distributions.TransformedDistribution.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.learn.BaseEstimator.get_variable_value()

tf.contrib.learn.BaseEstimator.get_variable_value(name) Returns value of the variable given by name. Args: name: string, name of the tensor. Returns: Numpy array - value of the tensor.

tf.TensorArray.dtype

tf.TensorArray.dtype The data type of this TensorArray.

tf.errors.ResourceExhaustedError

class tf.errors.ResourceExhaustedError Some resource has been exhausted. For example, this error might be raised if a per-user quota is exhausted, or perhaps the entire file system is out of space.

tf.contrib.framework.with_same_shape()

tf.contrib.framework.with_same_shape(expected_tensor, tensor) Assert tensors are the same shape, from the same graph. Args: expected_tensor: Tensor with expected shape. tensor: Tensor of actual values. Returns: Tuple of (actual_tensor, label_tensor), possibly with assert ops added.

tf.contrib.distributions.StudentT.mu

tf.contrib.distributions.StudentT.mu Locations of these Student's t distribution(s).

tf.contrib.distributions.DirichletMultinomial.dtype

tf.contrib.distributions.DirichletMultinomial.dtype The DType of Tensors handled by this Distribution.