tf.contrib.learn.monitors.ExportMonitor.epoch_end()

tf.contrib.learn.monitors.ExportMonitor.epoch_end(epoch) End epoch. Args: epoch: int, the epoch number. Raises: ValueError: if we've not begun an epoch, or epoch number does not match.

tf.contrib.learn.LinearRegressor.linear_bias_

tf.contrib.learn.LinearRegressor.linear_bias_ Returns bias of the linear part.

tf.self_adjoint_eigvals()

tf.self_adjoint_eigvals(tensor, name=None) Computes the eigenvalues of one or more self-adjoint matrices. Args: tensor: Tensor of shape [..., N, N]. name: string, optional name of the operation. Returns: e: Eigenvalues. Shape is [..., N]. The vector e[..., :] contains the N eigenvalues of tensor[..., :, :].

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.value()

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.value(name='value')

tensorflow::Env::GetFileSize()

Status tensorflow::Env::GetFileSize(const string &fname, uint64 *file_size) Stores the size of fname in *file_size.

tf.decode_base64()

tf.decode_base64(input, name=None) Decode web-safe base64-encoded strings. Input may or may not have padding at the end. See EncodeBase64 for padding. Web-safe means that input must use - and _ instead of + and /. Args: input: A Tensor of type string. Base64 strings to decode. name: A name for the operation (optional). Returns: A Tensor of type string. Decoded strings.

tf.contrib.distributions.MultivariateNormalFull.event_shape()

tf.contrib.distributions.MultivariateNormalFull.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.distributions.StudentT.prob()

tf.contrib.distributions.StudentT.prob(value, name='prob') Probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.LaplaceWithSoftplusScale.std()

tf.contrib.distributions.LaplaceWithSoftplusScale.std(name='std') Standard deviation.

tf.contrib.distributions.Exponential.sample()

tf.contrib.distributions.Exponential.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.