tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.sample()

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.entropy(name='entropy')

tf.SparseTensor.__div__()

tf.SparseTensor.__div__(sp_x, y) Component-wise divides a SparseTensor by a dense Tensor. Limitation: this Op only broadcasts the dense side to the sparse side, but not the other direction. Args: sp_indices: A Tensor of type int64. 2-D. N x R matrix with the indices of non-empty values in a SparseTensor, possibly not in canonical ordering. sp_values: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8,

tf.contrib.learn.BaseEstimator.evaluate()

tf.contrib.learn.BaseEstimator.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) See Evaluable. Raises: ValueError: If at least one of x or y is provided, and at least one of input_fn or feed_fn is provided. Or if metrics is not None or dict.

tf.contrib.distributions.DirichletMultinomial.survival_function()

tf.contrib.distributions.DirichletMultinomial.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.framework.assign_from_values()

tf.contrib.framework.assign_from_values(var_names_to_values) Creates an assignment operation from a given mapping. This function provides a mechanism for performing assignment of variables to values in a way that does not fill the graph with large assignment values. Args: var_names_to_values: A map from variable names to values. Returns: assign_op: An Operation that assigns each of the given variables to the requested values. feed_dict: The feed dictionary to use when evaluating assign_op

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_cdf()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Args: value: float or double Tensor. name: The name to give this op. Returns: logcdf: a Tensor

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.survival_function()

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.layers.fully_connected()

tf.contrib.layers.fully_connected(*args, **kwargs) Adds a fully connected layer. fully_connected creates a variable called weights, representing a fully connected weight matrix, which is multiplied by the inputs to produce a Tensor of hidden units. If a normalizer_fn is provided (such as batch_norm), it is then applied. Otherwise, if normalizer_fn is None and a biases_initializer is provided then a biases variable would be created and added the hidden units. Finally, if activation_fn is not No

tf.contrib.graph_editor.ops()

tf.contrib.graph_editor.ops(*args, **kwargs) Helper to select operations. Args: *args: list of 1) regular expressions (compiled or not) or 2) (array of) tf.Operation. tf.Tensor instances are silently ignored. **kwargs: 'graph': tf.Graph in which to perform the regex query.This is required when using regex. 'positive_filter': an elem if selected only if positive_filter(elem) is True. This is optional. 'restrict_ops_regex': a regular expression is ignored if it doesn't start with the substring