tf.contrib.distributions.Laplace.log_pmf()

tf.contrib.distributions.Laplace.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.graph_editor.Transformer.new_name()

tf.contrib.graph_editor.Transformer.new_name(name) Compute a destination name from a source name. Args: name: the name to be "transformed". Returns: The transformed name. Raises: ValueError: if the source scope is used (that is, not an empty string) and the source name does not belong to the source scope.

tf.contrib.distributions.MultivariateNormalCholesky.log_pdf()

tf.contrib.distributions.MultivariateNormalCholesky.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.ExponentialWithSoftplusLam.log_cdf()

tf.contrib.distributions.ExponentialWithSoftplusLam.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Args: value: float or double Tensor. name: The name to give this op. Returns: logcdf: a Tensor of shape samp

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.loss(final_loss, name='Loss')

tf.contrib.distributions.ExponentialWithSoftplusLam.log_prob()

tf.contrib.distributions.ExponentialWithSoftplusLam.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.Dirichlet.batch_shape()

tf.contrib.distributions.Dirichlet.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.

tf.contrib.distributions.BernoulliWithSigmoidP.pmf()

tf.contrib.distributions.BernoulliWithSigmoidP.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.WishartCholesky.entropy()

tf.contrib.distributions.WishartCholesky.entropy(name='entropy') Shanon entropy in nats.

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.value_type