tensorflow::Status::operator==()

bool tensorflow::Status::operator==(const Status &x) const

tensorflow::Tensor::dtype()

DataType tensorflow::Tensor::dtype() const Returns the data type.

tf.contrib.learn.monitors.ValidationMonitor.run_on_all_workers

tf.contrib.learn.monitors.ValidationMonitor.run_on_all_workers

tf.contrib.distributions.Mixture.validate_args

tf.contrib.distributions.Mixture.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.contrib.learn.RunConfig.__init__()

tf.contrib.learn.RunConfig.__init__(master=None, task=None, num_ps_replicas=None, num_cores=0, log_device_placement=False, gpu_memory_fraction=1, cluster_spec=None, tf_random_seed=None, save_summary_steps=100, save_checkpoints_secs=600, keep_checkpoint_max=5, keep_checkpoint_every_n_hours=10000, job_name=None, is_chief=None, evaluation_master='') Constructor. If set to None, master, task, num_ps_replicas, cluster_spec, job_name, and is_chief are set based on the TF_CONFIG environment variable,

tf.contrib.learn.TensorFlowRNNRegressor.config

tf.contrib.learn.TensorFlowRNNRegressor.config

tf.TFRecordReader.reset()

tf.TFRecordReader.reset(name=None) Restore a reader to its initial clean state. Args: name: A name for the operation (optional). Returns: The created Operation.

tf.contrib.distributions.Dirichlet.pmf()

tf.contrib.distributions.Dirichlet.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.BetaWithSoftplusAB.log_prob()

tf.contrib.distributions.BetaWithSoftplusAB.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.ExponentialWithSoftplusLam.parameters

tf.contrib.distributions.ExponentialWithSoftplusLam.parameters Dictionary of parameters used by this Distribution.