tf.SparseTensorValue.__repr__()

tf.SparseTensorValue.__repr__() Return a nicely formatted representation string

tf.SparseTensorValue.shape

tf.SparseTensorValue.shape Alias for field number 2

tf.SparseTensorValue.indices

tf.SparseTensorValue.indices Alias for field number 0

tf.SparseTensorValue

class tf.SparseTensorValue SparseTensorValue(indices, values, shape)

tf.SparseTensor.__str__()

tf.SparseTensor.__str__()

tf.SparseTensor.__truediv__()

tf.SparseTensor.__truediv__(sp_x, y) Internal helper function for 'sp_t / dense_t'.

tf.SparseTensor.__mul__()

tf.SparseTensor.__mul__(sp_x, y) Component-wise multiplies a SparseTensor by a dense Tensor. The output locations corresponding to the implicitly zero elements in the sparse tensor will be zero (i.e., will not take up storage space), regardless of the contents of the dense tensor (even if it's +/-INF and that INF*0 == NaN). Limitation: this Op only broadcasts the dense side to the sparse side, but not the other direction. Args: sp_indices: A Tensor of type int64. 2-D. N x R matrix with the in

tf.SparseTensor.__div__()

tf.SparseTensor.__div__(sp_x, y) Component-wise divides a SparseTensor by a dense Tensor. Limitation: this Op only broadcasts the dense side to the sparse side, but not the other direction. Args: sp_indices: A Tensor of type int64. 2-D. N x R matrix with the indices of non-empty values in a SparseTensor, possibly not in canonical ordering. sp_values: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8,

tf.SparseTensor.values

tf.SparseTensor.values The non-zero values in the represented dense tensor. Returns: A 1-D Tensor of any data type.

tf.SparseTensor.__init__()

tf.SparseTensor.__init__(indices, values, shape) Creates a SparseTensor. Args: indices: A 2-D int64 tensor of shape [N, ndims]. values: A 1-D tensor of any type and shape [N]. shape: A 1-D int64 tensor of shape [ndims]. Returns: A SparseTensor