tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.__init__()

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)

tf.contrib.learn.Estimator.evaluate()

tf.contrib.learn.Estimator.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) See Evaluable. Raises: ValueError: If at least one of x or y is provided, and at least one of input_fn or feed_fn is provided. Or if metrics is not None or dict.

tf.contrib.distributions.DirichletMultinomial.param_static_shapes()

tf.contrib.distributions.DirichletMultinomial.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes. Args: sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample(). Returns: dict of parameter name to TensorShape. Raises: ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.graph_editor.matcher

class tf.contrib.graph_editor.matcher Graph match class.

tf.contrib.distributions.Multinomial.get_event_shape()

tf.contrib.distributions.Multinomial.get_event_shape() Shape of a single sample from a single batch as a TensorShape. Same meaning as event_shape. May be only partially defined. Returns: event_shape: TensorShape, possibly unknown.

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.input_dict

tf.contrib.learn.LinearRegressor.bias_

tf.contrib.learn.LinearRegressor.bias_

tf.floor()

tf.floor(x, name=None) Returns element-wise largest integer not greater than x. Args: x: A Tensor. Must be one of the following types: half, float32, float64. name: A name for the operation (optional). Returns: A Tensor. Has the same type as x.

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.loss(final_loss, name='Loss')